Lidong Xing, Wei Xiao, Zefeng Zhang, Yanping Bao, Min Wang
{"title":"Physical Modeling Study for Process Optimization of 300-ton RH Vacuum Refining Furnace","authors":"Lidong Xing, Wei Xiao, Zefeng Zhang, Yanping Bao, Min Wang","doi":"10.1007/s40831-024-00799-1","DOIUrl":null,"url":null,"abstract":"<p>To investigate the optimal operating conditions of a 300-ton RH vacuum refining furnace in a steel mill, a physical model of a 1/4 scale RH furnace was developed in this paper. Under the condition of fixed pressure in the vacuum chamber, the immersion depth of the snorkel and the injection gas flow rate are important conditions affecting the effect of vacuum refining. The effects of snorkel immersion depth, injection gas flow rate, and blowhole blockage on circulating flow rate, the mixing time in ladle, and residence time in vacuum chamber were systematically studied. The flow behavior and the decarburization behavior of the liquid in the vacuum chamber were analyzed. The influence law of RH blowhole blockage on the vacuum refining effect was also studied. As a result, the optimum production process suitable for the production of 300-ton RH furnace was deduced (the optimal immersion depth is 0.52–0.54 m, the recommended injection flow rate used in the early stage of decarbonization is about 160–180 m<sup>3</sup>/h), which provides guidance for its efficient production.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"10 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00799-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the optimal operating conditions of a 300-ton RH vacuum refining furnace in a steel mill, a physical model of a 1/4 scale RH furnace was developed in this paper. Under the condition of fixed pressure in the vacuum chamber, the immersion depth of the snorkel and the injection gas flow rate are important conditions affecting the effect of vacuum refining. The effects of snorkel immersion depth, injection gas flow rate, and blowhole blockage on circulating flow rate, the mixing time in ladle, and residence time in vacuum chamber were systematically studied. The flow behavior and the decarburization behavior of the liquid in the vacuum chamber were analyzed. The influence law of RH blowhole blockage on the vacuum refining effect was also studied. As a result, the optimum production process suitable for the production of 300-ton RH furnace was deduced (the optimal immersion depth is 0.52–0.54 m, the recommended injection flow rate used in the early stage of decarbonization is about 160–180 m3/h), which provides guidance for its efficient production.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.