Designing magnetic catalysts based on gold nanoparticles supported by ethylenediamine tetraacetic acid functionalized amino-modified poly(N-isopropyl acrylamide) for reduction of nitro compounds in water

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2024-02-28 DOI:10.1002/pi.6625
Hadieh Rahbar Kafshboran, Soheila Ghasemi
{"title":"Designing magnetic catalysts based on gold nanoparticles supported by ethylenediamine tetraacetic acid functionalized amino-modified poly(N-isopropyl acrylamide) for reduction of nitro compounds in water","authors":"Hadieh Rahbar Kafshboran,&nbsp;Soheila Ghasemi","doi":"10.1002/pi.6625","DOIUrl":null,"url":null,"abstract":"<p>A novel smart catalyst was developed with amino-modified thermo-responsive poly(<i>N</i>-isopropyl acrylamide) (PNIPAM) grafts on silica-coated magnetic nanoparticles using the conventional free radical polymerization process. By this methodology, the polymer was successfully grafted mainly onto silica-modified iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@Si). The PNIPAM-grafted Fe<sub>3</sub>O<sub>4</sub>@Si was then subjected to ethylenediamine treatment to produce the amino-functionalized support (Fe<sub>3</sub>O<sub>4</sub>@Si@PNIPAM-NH<sub>2</sub>), which was subsequently modified with carboxyl functional groups by using EDTA (ethylenediaminetetraacetic acid) to create Fe<sub>3</sub>O<sub>4</sub>@Si@PNIPAM-NH<sub>2</sub>-EDTA. Au nanoparticles were then decorated on this support through its two amines and four carboxylates. Different methods were used to study this novel catalyst, including inductively coupled plasma, Fourier transport infrared spectroscopy, TGA, dynamic light scattering, SEM, energy-dispersive X-ray analysis, vibrating sample magnetometry, XRD and elemental CHN analysis. The reduction of several aryl-nitro derivatives demonstrated a significant catalytic activity for the as-synthesized gold catalyst (Fe<sub>3</sub>O<sub>4</sub>@Si@PNIPAM-NH<sub>2</sub>-EDTA-Au). The Au catalyst can be successfully removed from the reaction components using a magnetic field and used again in eight successive reduction reactions without significant gold leaching and loss of catalytic activity. © 2024 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 7","pages":"530-544"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6625","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A novel smart catalyst was developed with amino-modified thermo-responsive poly(N-isopropyl acrylamide) (PNIPAM) grafts on silica-coated magnetic nanoparticles using the conventional free radical polymerization process. By this methodology, the polymer was successfully grafted mainly onto silica-modified iron oxide nanoparticles (Fe3O4@Si). The PNIPAM-grafted Fe3O4@Si was then subjected to ethylenediamine treatment to produce the amino-functionalized support (Fe3O4@Si@PNIPAM-NH2), which was subsequently modified with carboxyl functional groups by using EDTA (ethylenediaminetetraacetic acid) to create Fe3O4@Si@PNIPAM-NH2-EDTA. Au nanoparticles were then decorated on this support through its two amines and four carboxylates. Different methods were used to study this novel catalyst, including inductively coupled plasma, Fourier transport infrared spectroscopy, TGA, dynamic light scattering, SEM, energy-dispersive X-ray analysis, vibrating sample magnetometry, XRD and elemental CHN analysis. The reduction of several aryl-nitro derivatives demonstrated a significant catalytic activity for the as-synthesized gold catalyst (Fe3O4@Si@PNIPAM-NH2-EDTA-Au). The Au catalyst can be successfully removed from the reaction components using a magnetic field and used again in eight successive reduction reactions without significant gold leaching and loss of catalytic activity. © 2024 Society of Industrial Chemistry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计基于 EDTA 功能化氨基改性 PNIPAM 支持的金纳米粒子的磁性催化剂,用于还原水中的硝基化合物
利用传统的自由基聚合工艺,在二氧化硅包覆的 MNPs 上接枝氨基改性热响应聚(N-异丙基丙烯酰胺)(PNIPAM),开发了一种新型智能催化剂。通过这种方法,聚合物主要被成功接枝到二氧化硅修饰的氧化铁纳米粒子(Fe3O4@Si)上。PNIPAM 接枝的 Fe3O4@Si 然后经过乙二胺处理,生成氨基官能化的支撑物(Fe3O4@Si@PNIPAM-NH2),随后使用 EDTA(乙二胺四乙酸)对其进行羧基官能团修饰,生成 Fe3O4@Si@PNIPAM-NH2-EDTA。研究人员采用了不同的方法来研究这种新型催化剂,包括 ICP、FT-IR、TGA、DLS、SEM、EDX、VSM、XRD 和 CHN。对几种芳基硝基衍生物的还原表明,合成的金催化剂(Fe3O4@Si-NPNIPAM-NH2-EDTA-Au)具有显著的催化活性。利用磁场可成功地将金催化剂从反应组分中移除,并在 8 个连续的还原反应中再次使用,而不会有明显的金浸出和催化活性损失。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers Issue Information Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1