Time series generation for option pricing on quantum computers using tensor network

Nozomu Kobayashi, Yoshiyuki Suimon, Koichi Miyamoto
{"title":"Time series generation for option pricing on quantum computers using tensor network","authors":"Nozomu Kobayashi, Yoshiyuki Suimon, Koichi Miyamoto","doi":"arxiv-2402.17148","DOIUrl":null,"url":null,"abstract":"Finance, especially option pricing, is a promising industrial field that\nmight benefit from quantum computing. While quantum algorithms for option\npricing have been proposed, it is desired to devise more efficient\nimplementations of costly operations in the algorithms, one of which is\npreparing a quantum state that encodes a probability distribution of the\nunderlying asset price. In particular, in pricing a path-dependent option, we\nneed to generate a state encoding a joint distribution of the underlying asset\nprice at multiple time points, which is more demanding. To address these\nissues, we propose a novel approach using Matrix Product State (MPS) as a\ngenerative model for time series generation. To validate our approach, taking\nthe Heston model as a target, we conduct numerical experiments to generate time\nseries in the model. Our findings demonstrate the capability of the MPS model\nto generate paths in the Heston model, highlighting its potential for\npath-dependent option pricing on quantum computers.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.17148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finance, especially option pricing, is a promising industrial field that might benefit from quantum computing. While quantum algorithms for option pricing have been proposed, it is desired to devise more efficient implementations of costly operations in the algorithms, one of which is preparing a quantum state that encodes a probability distribution of the underlying asset price. In particular, in pricing a path-dependent option, we need to generate a state encoding a joint distribution of the underlying asset price at multiple time points, which is more demanding. To address these issues, we propose a novel approach using Matrix Product State (MPS) as a generative model for time series generation. To validate our approach, taking the Heston model as a target, we conduct numerical experiments to generate time series in the model. Our findings demonstrate the capability of the MPS model to generate paths in the Heston model, highlighting its potential for path-dependent option pricing on quantum computers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用张量网络在量子计算机上生成用于期权定价的时间序列
金融,尤其是期权定价,是一个大有可为的工业领域,可能会从量子计算中受益。虽然已经提出了期权定价的量子算法,但人们希望能更有效地实现算法中的高成本运算,其中之一就是准备一个量子态来编码标的资产价格的概率分布。特别是,在对路径依赖期权进行定价时,我们需要生成一个状态来编码标的资产价格在多个时间点的联合分布,这对算法的要求更高。为了解决这些问题,我们提出了一种使用矩阵乘积状态(MPS)作为时间序列生成模型的新方法。为了验证我们的方法,我们以 Heston 模型为目标,进行了数值实验来生成模型中的时间序列。我们的研究结果证明了 MPS 模型生成海斯顿模型路径的能力,突出了它在量子计算机上进行路径依赖期权定价的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1