Refiner: a reliable and efficient incentive-driven federated learning system powered by blockchain

Hong Lin, Ke Chen, Dawei Jiang, Lidan Shou, Gang Chen
{"title":"Refiner: a reliable and efficient incentive-driven federated learning system powered by blockchain","authors":"Hong Lin, Ke Chen, Dawei Jiang, Lidan Shou, Gang Chen","doi":"10.1007/s00778-024-00839-y","DOIUrl":null,"url":null,"abstract":"<p>Federated learning (FL) enables learning a model from data distributed across numerous workers while preserving data privacy. However, the classical FL technique is designed for Web2 applications where participants are trusted to produce correct computation results. Moreover, classical FL workers are assumed to voluntarily contribute their computational resources and have the same learning speed. Therefore, the classical FL technique is not applicable to Web3 applications, where participants are <i>untrusted</i> and <i>self-interested</i> players with <i>potentially malicious</i> behaviors and <i>heterogeneous</i> learning speeds. This paper proposes <i>Refiner</i>, a novel blockchain-powered decentralized FL system for Web3 applications. Refiner addresses the challenges introduced by Web3 participants by extending the classical FL technique with three interoperative extensions: (1) an incentive scheme for attracting self-interested participants, (2) a two-stage audit scheme for preventing malicious behavior, and (3) an incentive-aware semi-synchronous learning scheme for handling heterogeneous workers. We provide theoretical analyses of the security and efficiency of Refiner. Extensive experimental results on the CIFAR-10 and Shakespeare datasets confirm the effectiveness, security, and efficiency of Refiner.</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-024-00839-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) enables learning a model from data distributed across numerous workers while preserving data privacy. However, the classical FL technique is designed for Web2 applications where participants are trusted to produce correct computation results. Moreover, classical FL workers are assumed to voluntarily contribute their computational resources and have the same learning speed. Therefore, the classical FL technique is not applicable to Web3 applications, where participants are untrusted and self-interested players with potentially malicious behaviors and heterogeneous learning speeds. This paper proposes Refiner, a novel blockchain-powered decentralized FL system for Web3 applications. Refiner addresses the challenges introduced by Web3 participants by extending the classical FL technique with three interoperative extensions: (1) an incentive scheme for attracting self-interested participants, (2) a two-stage audit scheme for preventing malicious behavior, and (3) an incentive-aware semi-synchronous learning scheme for handling heterogeneous workers. We provide theoretical analyses of the security and efficiency of Refiner. Extensive experimental results on the CIFAR-10 and Shakespeare datasets confirm the effectiveness, security, and efficiency of Refiner.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refiner:由区块链驱动的可靠高效的激励驱动联合学习系统
联合学习(FL)可以从分布在众多工作者身上的数据中学习模型,同时保护数据隐私。然而,经典的联合学习技术是为 Web2 应用程序设计的,在 Web2 应用程序中,参与者被认为会产生正确的计算结果。此外,经典的 FL 工作者被假定自愿贡献其计算资源,并具有相同的学习速度。因此,经典的 FL 技术不适用于 Web3 应用程序,因为在 Web3 应用程序中,参与者都是不被信任的自利参与者,他们可能有恶意行为,学习速度也不尽相同。本文针对 Web3 应用程序提出了一种新型区块链驱动的去中心化 FL 系统 Refiner。Refiner 针对 Web3 参与者带来的挑战,在经典 FL 技术的基础上进行了三个互操作扩展:(1)用于吸引自利参与者的激励方案;(2)用于防止恶意行为的两阶段审核方案;(3)用于处理异构工作者的激励感知半同步学习方案。我们对 Refiner 的安全性和效率进行了理论分析。在 CIFAR-10 和 Shakespeare 数据集上的大量实验结果证实了 Refiner 的有效性、安全性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A versatile framework for attributed network clustering via K-nearest neighbor augmentation Discovering critical vertices for reinforcement of large-scale bipartite networks DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search Enabling space-time efficient range queries with REncoder AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1