The uniform distribution modulo one of certain subsequences of ordinates of zeros of the zeta function

FATMA ÇİÇEK, STEVEN M. GONEK
{"title":"The uniform distribution modulo one of certain subsequences of ordinates of zeros of the zeta function","authors":"FATMA ÇİÇEK, STEVEN M. GONEK","doi":"10.1017/s0305004124000045","DOIUrl":null,"url":null,"abstract":"<p>On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+i\\gamma$</span></span></img></span></span> of the Riemann zeta function, we show that the sequence <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_eqnU1.png\"><span data-mathjax-type=\"texmath\"><span>\\begin{equation*}\\Gamma_{[a, b]} =\\Bigg\\{ \\gamma : \\gamma&gt;0 \\quad \\mbox{and} \\quad \\frac{ \\log\\big(| \\zeta^{(m_{\\gamma })} (\\frac12+ i{\\gamma }) | / (\\!\\log{{\\gamma }} )^{m_{\\gamma }}\\big)}{\\sqrt{\\frac12\\log\\log {\\gamma }}} \\in [a, b] \\Bigg\\},\\end{equation*}</span></span></img></span>where the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }$</span></span></img></span></span> are arranged in increasing order, is uniformly distributed modulo one. Here <span>a</span> and <span>b</span> are real numbers with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$a&lt;b$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$m_\\gamma$</span></span></img></span></span> denotes the multiplicity of the zero <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+i{\\gamma }$</span></span></img></span></span>. The same result holds when the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }$</span></span></img></span></span>’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma (\\!\\log T)/2\\pi$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }\\in \\Gamma_{[a, b]}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline9.png\"/><span data-mathjax-type=\"texmath\"><span>$0&lt;{\\gamma }\\leq T$</span></span></span></span>.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"252 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000045","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros Abstract Image$1/2+i\gamma$ of the Riemann zeta function, we show that the sequence Abstract Image\begin{equation*}\Gamma_{[a, b]} =\Bigg\{ \gamma : \gamma>0 \quad \mbox{and} \quad \frac{ \log\big(| \zeta^{(m_{\gamma })} (\frac12+ i{\gamma }) | / (\!\log{{\gamma }} )^{m_{\gamma }}\big)}{\sqrt{\frac12\log\log {\gamma }}} \in [a, b] \Bigg\},\end{equation*}where the Abstract Image${\gamma }$ are arranged in increasing order, is uniformly distributed modulo one. Here a and b are real numbers with Abstract Image$a<b$, and Abstract Image$m_\gamma$ denotes the multiplicity of the zero Abstract Image$1/2+i{\gamma }$. The same result holds when the Abstract Image${\gamma }$’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers Abstract Image$\gamma (\!\log T)/2\pi$ with Abstract Image${\gamma }\in \Gamma_{[a, b]}$ and Abstract Image$0<{\gamma }\leq T$.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
zeta函数零点序数的某些子序列的均匀分布模一
在黎曼假设和黎曼zeta函数非奇异零点1/2+i\gamma$的间隔假设的前提下,我们证明了序列 \begin{equation*}\Gamma_{[a, b]} =\Bigg\{ \gamma : \gamma>0 \quad \mbox{and}.\quad \frac{ log\big(| \zeta^{(m_{\gamma })} (\frac12+ i{\gamma }) | / (\!\log{{\gamma }} )^{m_{\gamma }}\big)} {sqrt{\frac12\log{\gamma }}}\in [a, b] \Bigg\},end{equation*} 其中 ${gamma }$ 是按递增顺序排列的,是均匀分布的 modulo 1。这里,a 和 b 是实数,取值为 $a<b$,$m_\gamma$ 表示零点的倍率 $1/2+i{gamma }$。当限制 ${gamma }$ 为简单零点的序数时,同样的结果成立。通过一个额外的假设,我们还能证明${\gamma }/$在 \Gamma_{[a, b]}$ 和$0<{\gamma }leq T$中的缩放数$\gamma (\!\log T)/2\pi$ 的等分布结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
期刊最新文献
The Failure of Galois Descent for p-Selmer Groups of Elliptic Curves Generalised knotoids Multiplicative dependence of rational values modulo approximate finitely generated groups Tropical curves in abelian surfaces I: enumeration of curves passing through points Domination inequalities and dominating graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1