{"title":"A spatio-temporal binary grid-based clustering model for seismicity analysis","authors":"Rahul Kumar Vijay, Satyasai Jagannath Nanda, Ashish Sharma","doi":"10.1007/s10044-024-01234-7","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a spatio-temporal binary grid-based clustering model for determining complex earthquake clusters with different shapes and heterogeneous densities present in a catalog. The 3D occurrence of earthquakes is mapped into a 2D-low memory sparse matrix through a grid mechanism in the binary domain with consideration of spatio-temporal attributes. Then, image-transformation of a non-empty sets binary feature matrix, a clustering strategy is implemented with logical AND operator as similarity measure among the binary vectors. This approach is applied to solve the problem of seismicity declustering which separates the clustering and non-clustering patterns of seismicity for real-world earthquake catalogs of Japan (1972–2020) and Eastern Mediterranean (1966–2020). Results demonstrate that the proposed method has a significant reduction in both computation and memory footprint with few tuning parameters. Background earthquakes have an impression on the homogeneous Poisson process with fair memory-less characteristics in the time domain as evident from graphical and statistical analysis. Overall seismicity and observed background activity both have similar multi-fractal behavior with a deviation of <span>\\(\\pm 0.04\\)</span>. The comparative analysis is carried out with benchmark declustering models: Gardner–Knopoff, Uhrhammer, Gruenthal window-based method, and Reasenberg’s approach, and superior performance of the proposed method is found in most cases.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"254 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01234-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a spatio-temporal binary grid-based clustering model for determining complex earthquake clusters with different shapes and heterogeneous densities present in a catalog. The 3D occurrence of earthquakes is mapped into a 2D-low memory sparse matrix through a grid mechanism in the binary domain with consideration of spatio-temporal attributes. Then, image-transformation of a non-empty sets binary feature matrix, a clustering strategy is implemented with logical AND operator as similarity measure among the binary vectors. This approach is applied to solve the problem of seismicity declustering which separates the clustering and non-clustering patterns of seismicity for real-world earthquake catalogs of Japan (1972–2020) and Eastern Mediterranean (1966–2020). Results demonstrate that the proposed method has a significant reduction in both computation and memory footprint with few tuning parameters. Background earthquakes have an impression on the homogeneous Poisson process with fair memory-less characteristics in the time domain as evident from graphical and statistical analysis. Overall seismicity and observed background activity both have similar multi-fractal behavior with a deviation of \(\pm 0.04\). The comparative analysis is carried out with benchmark declustering models: Gardner–Knopoff, Uhrhammer, Gruenthal window-based method, and Reasenberg’s approach, and superior performance of the proposed method is found in most cases.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.