Xiaolin Xie, Zixiang Yan, Zhihong Zhang, Yibo Qin, Hang Jin, Man Xu
{"title":"Hybrid genetic ant colony optimization algorithm for full-coverage path planning of gardening pruning robots","authors":"Xiaolin Xie, Zixiang Yan, Zhihong Zhang, Yibo Qin, Hang Jin, Man Xu","doi":"10.1007/s11370-024-00525-6","DOIUrl":null,"url":null,"abstract":"<p>Gardening pruning robots are widely applied in green space construction. However, increase of green space environment complexity and obstacle number affect the coverage range and work efficiency of robots. To solve this problem, this research proposed a full-coverage path planning algorithm integrating hybrid genetic ant colony and A* algorithm. Specifically tailored to the lawn working environments of horticultural pruning robots, we initially employed visual simultaneous localization and mapping to create a 3D point cloud map, converting it into an occupancy grid map for future path planning. The obtained grid map was partitioned into multiple subareas on the basis of the locations of obstacles. The optimal traversal order of sub-regions was determined using hybrid genetic ant colony method and a new update strategy of heuristic and pheromone factors was developed for improving the ability of global search and probability of jumping out of local optimal solution. Boustrophedon method was applied to fully cover each sub-region, A* algorithm was adopted to connect various sub-regions, and connection strategy was optimized. Simulation results showed that compared with traditional ant colony algorithm and other full-coverage planning algorithms, the algorithm developed in this research presented superior performance in terms of traversal path length, starting distance, coverage rate and turning times on maps with various sizes and complexities.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-024-00525-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gardening pruning robots are widely applied in green space construction. However, increase of green space environment complexity and obstacle number affect the coverage range and work efficiency of robots. To solve this problem, this research proposed a full-coverage path planning algorithm integrating hybrid genetic ant colony and A* algorithm. Specifically tailored to the lawn working environments of horticultural pruning robots, we initially employed visual simultaneous localization and mapping to create a 3D point cloud map, converting it into an occupancy grid map for future path planning. The obtained grid map was partitioned into multiple subareas on the basis of the locations of obstacles. The optimal traversal order of sub-regions was determined using hybrid genetic ant colony method and a new update strategy of heuristic and pheromone factors was developed for improving the ability of global search and probability of jumping out of local optimal solution. Boustrophedon method was applied to fully cover each sub-region, A* algorithm was adopted to connect various sub-regions, and connection strategy was optimized. Simulation results showed that compared with traditional ant colony algorithm and other full-coverage planning algorithms, the algorithm developed in this research presented superior performance in terms of traversal path length, starting distance, coverage rate and turning times on maps with various sizes and complexities.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).