Capturing the Chirality of Photoexcited States with Ultrafast Circular Dichroism.

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Chimia Pub Date : 2024-02-28 DOI:10.2533/chimia.2024.45
Malte Oppermann
{"title":"Capturing the Chirality of Photoexcited States with Ultrafast Circular Dichroism.","authors":"Malte Oppermann","doi":"10.2533/chimia.2024.45","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2024.45","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral molecules exist in two forms, called enantiomers, which are mirror images of each other but non-superimposable. Even though enantiomers share most chemical and physical properties, they may differ greatly in their (bio-)chemical activities, which turns chirality into a key design feature for (bio-)chemical function. In this spirit, the incorporation of chiral structures into photochemical systems has emerged as a powerful strategy to control their functions. For example, uni-directional molecular motors, chiral photocatalysts, and chiral metal nanostructures permit new levels of stereocontrol over mechanical motion, energy transfer, and electric charge-carriers on the nanoscale. However, the direct characterization of the underlying chiral photoexcited states remains a formidable experimental challenge - especially in the native solution phase of many photochemical processes. Crucially, this requires analytical techniques that combine a high chiral sensitivity in solution with ultrafast time resolution to capture the excited state dynamics. This brief perspective article presents recent progress in the development of ultrafast chiral spectroscopy techniques that address this challenge.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超快圆二色性捕捉光激发态的手性。
手性分子以两种形式存在,即对映体,它们互为镜像,但不可叠加。尽管对映体具有相同的化学和物理特性,但它们在(生物)化学活性方面可能存在很大差异,这就使手性成为(生物)化学功能的一个关键设计特征。本着这种精神,在光化学系统中加入手性结构已成为控制其功能的有力策略。例如,单向分子马达、手性光催化剂和手性金属纳米结构可以在纳米尺度上对机械运动、能量传递和电荷载体进行新的立体控制。然而,直接表征底层手性光激发态仍然是一项艰巨的实验挑战--尤其是在许多光化学过程的原生溶液阶段。至关重要的是,这需要分析技术将溶液中的高手性灵敏度与超快时间分辨率相结合,以捕捉激发态动态。这篇简短的透视文章介绍了为应对这一挑战而开发超快手性光谱技术的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
期刊最新文献
Editorial. Enabling a Smooth Transition: Responsible Chemistry Competencies for the European Green Deal. Legal and Operational Aspects of Compliance with Scientific Integrity. Orchestrating Relevance - Critique of a Questionable Trait of Modern Science Communication. The Code of Ethics for Chemists between Universal Moral Values and Local Reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1