{"title":"Cdc42 activation is necessary for heterosynaptic cooperation and competition","authors":"Mariana Nunes , Natália Madeira, Rosalina Fonseca","doi":"10.1016/j.mcn.2024.103921","DOIUrl":null,"url":null,"abstract":"<div><p>Synapses change their weights in response to neuronal activity and in turn, neuronal networks alter their response properties and ultimately allow the brain to store information as memories. As for memories, not all events are maintained over time. Maintenance of synaptic plasticity depends on the interplay between functional changes at synapses and the synthesis of plasticity-related proteins that are involved in stabilizing the initial functional changes. Different forms of synaptic plasticity coexist in time and across the neuronal dendritic area. Thus, homosynaptic plasticity refers to activity-dependent synaptic modifications that are input-specific, whereas heterosynaptic plasticity relates to changes in non-activated synapses. Heterosynaptic forms of plasticity, such as synaptic cooperation and competition allow neurons to integrate events that occur separated by relatively large time windows, up to one hour. Here, we show that activation of Cdc42, a Rho GTPase that regulates actin cytoskeleton dynamics, is necessary for the maintenance of long-term potentiation (LTP) in a time-dependent manner. Inhibiting Cdc42 activation does not alter the time-course of LTP induction and its initial expression but blocks its late maintenance. We show that Cdc42 activation is involved in the phosphorylation of cofilin, a protein involved in modulating actin filaments and that weak and strong synaptic activation leads to similar levels on cofilin phosphorylation, despite different levels of LTP expression. We show that Cdc42 activation is required for synapses to interact by cooperation or competition, supporting the hypothesis that modulation of the actin cytoskeleton provides an activity-dependent and time-restricted permissive state of synapses allowing synaptic plasticity to occur. We found that under competition, the sequence in which synapses are activated determines the degree of LTP destabilization, demonstrating that competition is an active destabilization process. Taken together, we show that modulation of actin cytoskeleton by Cdc42 activation is necessary for the expression of homosynaptic and heterosynaptic forms of plasticity. Determining the temporal and spatial rules that determine whether synapses cooperate or compete will allow us to understand how memories are associated.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"129 ","pages":"Article 103921"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S104474312400006X/pdfft?md5=c917b58c02eaf23ceace51cdc0fc9804&pid=1-s2.0-S104474312400006X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104474312400006X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Synapses change their weights in response to neuronal activity and in turn, neuronal networks alter their response properties and ultimately allow the brain to store information as memories. As for memories, not all events are maintained over time. Maintenance of synaptic plasticity depends on the interplay between functional changes at synapses and the synthesis of plasticity-related proteins that are involved in stabilizing the initial functional changes. Different forms of synaptic plasticity coexist in time and across the neuronal dendritic area. Thus, homosynaptic plasticity refers to activity-dependent synaptic modifications that are input-specific, whereas heterosynaptic plasticity relates to changes in non-activated synapses. Heterosynaptic forms of plasticity, such as synaptic cooperation and competition allow neurons to integrate events that occur separated by relatively large time windows, up to one hour. Here, we show that activation of Cdc42, a Rho GTPase that regulates actin cytoskeleton dynamics, is necessary for the maintenance of long-term potentiation (LTP) in a time-dependent manner. Inhibiting Cdc42 activation does not alter the time-course of LTP induction and its initial expression but blocks its late maintenance. We show that Cdc42 activation is involved in the phosphorylation of cofilin, a protein involved in modulating actin filaments and that weak and strong synaptic activation leads to similar levels on cofilin phosphorylation, despite different levels of LTP expression. We show that Cdc42 activation is required for synapses to interact by cooperation or competition, supporting the hypothesis that modulation of the actin cytoskeleton provides an activity-dependent and time-restricted permissive state of synapses allowing synaptic plasticity to occur. We found that under competition, the sequence in which synapses are activated determines the degree of LTP destabilization, demonstrating that competition is an active destabilization process. Taken together, we show that modulation of actin cytoskeleton by Cdc42 activation is necessary for the expression of homosynaptic and heterosynaptic forms of plasticity. Determining the temporal and spatial rules that determine whether synapses cooperate or compete will allow us to understand how memories are associated.
期刊介绍:
Molecular and Cellular Neuroscience publishes original research of high significance covering all aspects of neurosciences indicated by the broadest interpretation of the journal''s title. In particular, the journal focuses on synaptic maintenance, de- and re-organization, neuron-glia communication, and de-/regenerative neurobiology. In addition, studies using animal models of disease with translational prospects and experimental approaches with backward validation of disease signatures from human patients are welcome.