{"title":"User-defined weight based multi objective task scheduling in cloud using whale optimization algorithm","authors":"Swati Gupta, Ravi Shankar Singh","doi":"10.1016/j.simpat.2024.102915","DOIUrl":null,"url":null,"abstract":"<div><p>Cloud computing has revolutionized the IT landscape, providing scalable, on-demand computing resource. For efficiency in cloud environments, it is essential for modern organizations, where objectives often include cost reduction, resource consumption, operational efficiency and load balancing etc, to implement multi objective solutions. Single-objective systems can fail in handling dynamic and diverse workloads. This study introduces the Multi-Objective Whale Optimization-Based Scheduler (WOA-Scheduler) for efficient task scheduling in cloud computing environments. Leveraging the Whale Optimization Algorithm (WOA), the scheduler optimizes multiple objectives simultaneously, including cost, time, and load balancing. A key feature of the WOA-Scheduler is its flexibility in accommodating user-defined weights for different objectives, allowing organizations to prioritize optimization goals based on their specific requirements. Comparative analysis across various cloud environments demonstrates the superiority of the WOA-Scheduler over traditional single-objective approaches. By achieving a better balance between cost, time, and resource utilization, the scheduler enhances overall performance. Moreover, its multi-objective optimization capabilities enable dynamic adjustment of task assignments in response to changing workload conditions, ensuring efficient resource utilization and workload distribution. Overall, the WOA-Scheduler offers a customizable and adaptable solution for addressing the complexities of modern cloud services, ultimately improving performance and efficiency.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"133 ","pages":"Article 102915"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000297","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud computing has revolutionized the IT landscape, providing scalable, on-demand computing resource. For efficiency in cloud environments, it is essential for modern organizations, where objectives often include cost reduction, resource consumption, operational efficiency and load balancing etc, to implement multi objective solutions. Single-objective systems can fail in handling dynamic and diverse workloads. This study introduces the Multi-Objective Whale Optimization-Based Scheduler (WOA-Scheduler) for efficient task scheduling in cloud computing environments. Leveraging the Whale Optimization Algorithm (WOA), the scheduler optimizes multiple objectives simultaneously, including cost, time, and load balancing. A key feature of the WOA-Scheduler is its flexibility in accommodating user-defined weights for different objectives, allowing organizations to prioritize optimization goals based on their specific requirements. Comparative analysis across various cloud environments demonstrates the superiority of the WOA-Scheduler over traditional single-objective approaches. By achieving a better balance between cost, time, and resource utilization, the scheduler enhances overall performance. Moreover, its multi-objective optimization capabilities enable dynamic adjustment of task assignments in response to changing workload conditions, ensuring efficient resource utilization and workload distribution. Overall, the WOA-Scheduler offers a customizable and adaptable solution for addressing the complexities of modern cloud services, ultimately improving performance and efficiency.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.