Multi-objective optimal control of renewable energy based autonomous AC microgrid using dandelion optimisation

IF 4.2 Q2 ENERGY & FUELS Renewable Energy Focus Pub Date : 2024-02-29 DOI:10.1016/j.ref.2024.100563
Farhat Afzah Samoon, Ikhlaq Hussain, Sheikh Javed Iqbal
{"title":"Multi-objective optimal control of renewable energy based autonomous AC microgrid using dandelion optimisation","authors":"Farhat Afzah Samoon,&nbsp;Ikhlaq Hussain,&nbsp;Sheikh Javed Iqbal","doi":"10.1016/j.ref.2024.100563","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents multi-objective dandelion optimization (DEO) control of an autonomous microgrid consisting of a PV array, along with a battery energy storage system (BES) and diesel generator (DG) system for rural areas that are not connected to the main grid. This configuration aims at the maximum extraction of solar energy by using maximum power point tracking (MPPT) using a boost converter with dandelion optimization (DEO)-based incremental conductance (INC) algorithm. The INC algorithm uses the dandelion algorithm to calculate the ideal step size (δ), that significantly enhances the maximum power point tracking and increases the efficiency of algorithm. The DEO optimization also gives optimized value of gains of PI controller of bidirectional converter of battery for better DC bus voltage regulation. DC link voltage has less variations during steady state and dynamic conditions. Generic sigmoid function-based- modified variable step size least mean square (GS-MVSS-LMS) adaptive VSC control provides solutions for power quality issues such as harmonic elimination, and load leveling and regulates the voltage at PCC. The suggested control method performs better in terms of steady-state error reduction, convergence rate, transition tracking effectiveness, and self-coherence. The main features of this AC microgrid are the operation of a solar array at its MPPT, less utilization of diesel generators, and reactive power compensation. The performance of the proposed microgrid topology is studied under various dynamic conditions and performs satisfactorily as per IEEE 519 standards. MATLAB/ simpower tools are used for the simulation of system.</p></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"49 ","pages":"Article 100563"},"PeriodicalIF":4.2000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008424000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents multi-objective dandelion optimization (DEO) control of an autonomous microgrid consisting of a PV array, along with a battery energy storage system (BES) and diesel generator (DG) system for rural areas that are not connected to the main grid. This configuration aims at the maximum extraction of solar energy by using maximum power point tracking (MPPT) using a boost converter with dandelion optimization (DEO)-based incremental conductance (INC) algorithm. The INC algorithm uses the dandelion algorithm to calculate the ideal step size (δ), that significantly enhances the maximum power point tracking and increases the efficiency of algorithm. The DEO optimization also gives optimized value of gains of PI controller of bidirectional converter of battery for better DC bus voltage regulation. DC link voltage has less variations during steady state and dynamic conditions. Generic sigmoid function-based- modified variable step size least mean square (GS-MVSS-LMS) adaptive VSC control provides solutions for power quality issues such as harmonic elimination, and load leveling and regulates the voltage at PCC. The suggested control method performs better in terms of steady-state error reduction, convergence rate, transition tracking effectiveness, and self-coherence. The main features of this AC microgrid are the operation of a solar array at its MPPT, less utilization of diesel generators, and reactive power compensation. The performance of the proposed microgrid topology is studied under various dynamic conditions and performs satisfactorily as per IEEE 519 standards. MATLAB/ simpower tools are used for the simulation of system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用蒲公英优化技术实现基于可再生能源的自主交流微电网的多目标优化控制
本文介绍了由光伏阵列、电池储能系统(BES)和柴油发电机(DG)系统组成的自主微电网的多目标蒲公英优化(DEO)控制,适用于未与主电网连接的农村地区。这种配置的目的是通过使用最大功率点跟踪(MPPT)技术,使用基于蒲公英优化(DEO)的增量电导(INC)算法的升压转换器,最大限度地提取太阳能。INC 算法使用蒲公英算法来计算理想步长(δ),从而显著增强最大功率点跟踪能力并提高算法效率。DEO 优化还给出了电池双向转换器 PI 控制器的增益优化值,以实现更好的直流母线电压调节。直流母线电压在稳态和动态条件下的变化较小。基于通用西格玛函数的改进型变步长最小均方差(GS-MVSS-LMS)自适应 VSC 控制为电能质量问题(如谐波消除、负载均衡)提供了解决方案,并能调节 PCC 的电压。所建议的控制方法在减少稳态误差、收敛速度、过渡跟踪效果和自相干性方面表现更佳。该交流微电网的主要特点是太阳能电池阵列在其 MPPT 下运行、减少柴油发电机的使用以及无功功率补偿。在各种动态条件下,对所提出的微电网拓扑结构的性能进行了研究,结果令人满意,符合 IEEE 519 标准。系统仿真使用了 MATLAB/ simpower 工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy Focus
Renewable Energy Focus Renewable Energy, Sustainability and the Environment
CiteScore
7.10
自引率
8.30%
发文量
0
审稿时长
48 days
期刊最新文献
Multi-objective optimization of a biogas-fired gas turbine incorporated with closed Brayton and ejector power/cooling co-generation cycles Transition to a 100% renewable grid for a remote island: A case study of Tsushima Island, Japan PyPSA-BD: A customized model to explore decarbonized energy transition for developing country Renewable hydrogen systems for a sustainable heavy-duty mobility: The Italian case Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1