{"title":"A new definition for feature selection stability analysis","authors":"Teddy Lazebnik, Avi Rosenfeld","doi":"10.1007/s10472-024-09936-8","DOIUrl":null,"url":null,"abstract":"<div><p>Feature selection (FS) stability is an important topic of recent interest. Finding stable features is important for creating reliable, non-overfitted feature sets, which in turn can be used to generate machine learning models with better accuracy and explanations and are less prone to adversarial attacks. There are currently several definitions of FS stability that are widely used. In this paper, we demonstrate that existing stability metrics fail to quantify certain key elements of many datasets such as resilience to data drift or non-uniformly distributed missing values. To address this shortcoming, we propose a new definition for FS stability inspired by Lyapunov stability in dynamic systems. We show the proposed definition is statistically different from the classical <i>record-stability</i> on (<span>\\(n=90\\)</span>) datasets. We present the advantages and disadvantages of using Lyapunov and other stability definitions and demonstrate three scenarios in which each one of the three proposed stability metrics is best suited.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 3","pages":"753 - 770"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10472-024-09936-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-024-09936-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Feature selection (FS) stability is an important topic of recent interest. Finding stable features is important for creating reliable, non-overfitted feature sets, which in turn can be used to generate machine learning models with better accuracy and explanations and are less prone to adversarial attacks. There are currently several definitions of FS stability that are widely used. In this paper, we demonstrate that existing stability metrics fail to quantify certain key elements of many datasets such as resilience to data drift or non-uniformly distributed missing values. To address this shortcoming, we propose a new definition for FS stability inspired by Lyapunov stability in dynamic systems. We show the proposed definition is statistically different from the classical record-stability on (\(n=90\)) datasets. We present the advantages and disadvantages of using Lyapunov and other stability definitions and demonstrate three scenarios in which each one of the three proposed stability metrics is best suited.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.