Simulating 2-D magnetotelluric responses using vector-quantized temporal associative memory artificial neural network-based approaches

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscience Letters Pub Date : 2024-03-02 DOI:10.1186/s40562-024-00328-8
Phongphan Mukwachi, Banchar Arnonkijpanich, Weerachai Sarakorn
{"title":"Simulating 2-D magnetotelluric responses using vector-quantized temporal associative memory artificial neural network-based approaches","authors":"Phongphan Mukwachi, Banchar Arnonkijpanich, Weerachai Sarakorn","doi":"10.1186/s40562-024-00328-8","DOIUrl":null,"url":null,"abstract":"In this research, we explore the application of artificial neural networks, specifically the vector-quantized temporal associative memory (VQTAM) and VQTAM coupled with locally linear embedding (VQTAM-LLE) techniques, for simulating 2-D magnetotelluric forward modeling. The study introduces the concepts of VQTAM and VQTAM-LLE in the context of simulating 2-D magnetotelluric responses, outlining their underlying principles. We rigorously evaluate the accuracy and efficiency of both VQTAM variants through extensive numerical experiments conducted on diverse benchmark resistivity and real-terrain models. The results demonstrate the remarkable capability of VQTAM and VQTAM-LLE in accurately and efficiently predicting apparent resistivity and impedance phases, surpassing the performance of traditional numerical methods. This study underscores the potential of VQTAM and VQTAM-LLE as valuable computational alternatives for simulating magnetotelluric responses, offering a viable choice alongside conventional methods.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-024-00328-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we explore the application of artificial neural networks, specifically the vector-quantized temporal associative memory (VQTAM) and VQTAM coupled with locally linear embedding (VQTAM-LLE) techniques, for simulating 2-D magnetotelluric forward modeling. The study introduces the concepts of VQTAM and VQTAM-LLE in the context of simulating 2-D magnetotelluric responses, outlining their underlying principles. We rigorously evaluate the accuracy and efficiency of both VQTAM variants through extensive numerical experiments conducted on diverse benchmark resistivity and real-terrain models. The results demonstrate the remarkable capability of VQTAM and VQTAM-LLE in accurately and efficiently predicting apparent resistivity and impedance phases, surpassing the performance of traditional numerical methods. This study underscores the potential of VQTAM and VQTAM-LLE as valuable computational alternatives for simulating magnetotelluric responses, offering a viable choice alongside conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于矢量量化时间关联记忆人工神经网络的方法模拟二维磁突触响应
在这项研究中,我们探索了人工神经网络,特别是向量量化时间关联记忆(VQTAM)和向量量化时间关联记忆与局部线性嵌入(VQTAM-LLE)技术在模拟二维磁突触前向建模中的应用。本研究在模拟二维磁突触响应的背景下介绍了 VQTAM 和 VQTAM-LLE 的概念,概述了它们的基本原理。我们通过在各种基准电阻率和真实地形模型上进行广泛的数值实验,严格评估了 VQTAM 两种变体的精度和效率。结果表明,VQTAM 和 VQTAM-LLE 在准确高效地预测表观电阻率和阻抗相方面具有卓越的能力,超越了传统数值方法的性能。这项研究强调了 VQTAM 和 VQTAM-LLE 作为模拟磁突触响应的重要计算替代方法的潜力,为传统方法提供了可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscience Letters
Geoscience Letters Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍: Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.
期刊最新文献
The effectiveness of machine learning methods in the nonlinear coupled data assimilation Volcanic activity around Taipei, Taiwan: new data and perspectives on the Tatun Volcano Group A snapshot of the climate in the Middle Pleistocene inferred from a stalagmite from central Japan The crustal deformation mechanism of southern Chuandian block: constrained by S wave velocity and its azimuthal anisotropy Surface air temperature anomalies over Antarctica and the Southern ocean induced by interactions between the interdecadal Pacific oscillation and Atlantic multidecadal oscillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1