{"title":"Piston-like particle jamming for enhanced stiffness adjustment of soft robotic arm","authors":"Tianlei Wang, Fei Ding, Zhenxing Sun","doi":"10.1108/ir-11-2023-0305","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Stiffness adjusting ability is essential for soft robotic arms to perform complex tasks. A soft state enables dexterous operation and safe interaction, while a rigid state enables large force output or heavy weight carrying. However, making a compact integration of soft actuators with powerful stiffness adjusting mechanisms is challenging. This study aims to develop a piston-like particle jamming mechanism for enhanced stiffness adjustment of a soft robotic arm.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The arm has two pairs of differential tendons for spatial bending, and a jamming core consists of four jamming units with particles sealed inside braided tubes for stiffness adjustment. The jamming core is pushed and pulled smoothly along the tendons by a piston, which is then driven by a motor and a ball screw mechanism.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The tip displacement of the arm under 150 N jamming force and no more than 0.3 kg load is minimal. The maximum stiffening ratio measured in the experiment under 150 N jamming force is up to 6–25 depends on the bending direction and added load of the arm, which is superior to most of the vacuum powered jamming method.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed robotic arm makes an innovative compact integration of tendon-driven robotic arm and motor-driven piston-like particle jamming mechanism. The jamming force is much larger compared to conventional vacuum-powered systems and results in a superior stiffening ability.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-11-2023-0305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Stiffness adjusting ability is essential for soft robotic arms to perform complex tasks. A soft state enables dexterous operation and safe interaction, while a rigid state enables large force output or heavy weight carrying. However, making a compact integration of soft actuators with powerful stiffness adjusting mechanisms is challenging. This study aims to develop a piston-like particle jamming mechanism for enhanced stiffness adjustment of a soft robotic arm.
Design/methodology/approach
The arm has two pairs of differential tendons for spatial bending, and a jamming core consists of four jamming units with particles sealed inside braided tubes for stiffness adjustment. The jamming core is pushed and pulled smoothly along the tendons by a piston, which is then driven by a motor and a ball screw mechanism.
Findings
The tip displacement of the arm under 150 N jamming force and no more than 0.3 kg load is minimal. The maximum stiffening ratio measured in the experiment under 150 N jamming force is up to 6–25 depends on the bending direction and added load of the arm, which is superior to most of the vacuum powered jamming method.
Originality/value
The proposed robotic arm makes an innovative compact integration of tendon-driven robotic arm and motor-driven piston-like particle jamming mechanism. The jamming force is much larger compared to conventional vacuum-powered systems and results in a superior stiffening ability.