Falk Harnisch, Jörg S Deutzmann, Santiago T Boto, Miriam A Rosenbaum
{"title":"Microbial electrosynthesis: opportunities for microbial pure cultures.","authors":"Falk Harnisch, Jörg S Deutzmann, Santiago T Boto, Miriam A Rosenbaum","doi":"10.1016/j.tibtech.2024.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial electrosynthesis (MES) is an emerging technology that couples renewable electricity to microbial production processes. Although advances in MES performance have been driven largely by microbial mixed cultures, we see a great limitation in the diversity, and hence value, of products that can be achieved in undefined mixed cultures. By contrast, metabolic control of pure cultures and genetic engineering could greatly expand the scope of MES, and even of broader electrobiotechnology, to include targeted high-value products. To leverage this potential, we advocate for more efforts and activities to develop engineered electroactive microbes for synthesis, and we highlight the need for a standardized electrobioreactor infrastructure that allows the establishment and engineering of electrobioprocesses with these novel biocatalysts.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310912/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.02.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial electrosynthesis (MES) is an emerging technology that couples renewable electricity to microbial production processes. Although advances in MES performance have been driven largely by microbial mixed cultures, we see a great limitation in the diversity, and hence value, of products that can be achieved in undefined mixed cultures. By contrast, metabolic control of pure cultures and genetic engineering could greatly expand the scope of MES, and even of broader electrobiotechnology, to include targeted high-value products. To leverage this potential, we advocate for more efforts and activities to develop engineered electroactive microbes for synthesis, and we highlight the need for a standardized electrobioreactor infrastructure that allows the establishment and engineering of electrobioprocesses with these novel biocatalysts.
微生物电合成(MES)是一种将可再生电力与微生物生产过程相结合的新兴技术。虽然微生物电合成技术的进步主要是由微生物混合培养物推动的,但我们发现,在未确定的混合培养物中,产品的多样性和价值都受到很大限制。相比之下,对纯培养物的新陈代谢控制和基因工程可以极大地扩展 MES 甚至更广泛的电生物技术的范围,使其包括有针对性的高价值产品。为了充分利用这一潜力,我们主张开展更多工作和活动,开发用于合成的工程电活性微生物,并强调需要建立标准化的电生物反应器基础设施,以便利用这些新型生物催化剂建立和设计电生物工艺。
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).