Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology.

Q2 Agricultural and Biological Sciences 生物设计研究(英文) Pub Date : 2024-02-29 eCollection Date: 2024-01-01 DOI:10.34133/bdr.0029
Md Torikul Islam, Yang Liu, Md Mahmudul Hassan, Paul E Abraham, Jean Merlet, Alice Townsend, Daniel Jacobson, C Robin Buell, Gerald A Tuskan, Xiaohan Yang
{"title":"Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology.","authors":"Md Torikul Islam, Yang Liu, Md Mahmudul Hassan, Paul E Abraham, Jean Merlet, Alice Townsend, Daniel Jacobson, C Robin Buell, Gerald A Tuskan, Xiaohan Yang","doi":"10.34133/bdr.0029","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are complex systems hierarchically organized and composed of various cell types. To understand the molecular underpinnings of complex plant systems, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for revealing high resolution of gene expression patterns at the cellular level and investigating the cell-type heterogeneity. Furthermore, scRNA-seq analysis of plant biosystems has great potential for generating new knowledge to inform plant biosystems design and synthetic biology, which aims to modify plants genetically/epigenetically through genome editing, engineering, or re-writing based on rational design for increasing crop yield and quality, promoting the bioeconomy and enhancing environmental sustainability. In particular, data from scRNA-seq studies can be utilized to facilitate the development of high-precision Build-Design-Test-Learn capabilities for maximizing the targeted performance of engineered plant biosystems while minimizing unintended side effects. To date, scRNA-seq has been demonstrated in a limited number of plant species, including model plants (e.g., <i>Arabidopsis thaliana</i>), agricultural crops (e.g., <i>Oryza sativa</i>), and bioenergy crops (e.g., <i>Populus</i> spp.). It is expected that future technical advancements will reduce the cost of scRNA-seq and consequently accelerate the application of this emerging technology in plants. In this review, we summarize current technical advancements in plant scRNA-seq, including sample preparation, sequencing, and data analysis, to provide guidance on how to choose the appropriate scRNA-seq methods for different types of plant samples. We then highlight various applications of scRNA-seq in both plant systems biology and plant synthetic biology research. Finally, we discuss the challenges and opportunities for the application of scRNA-seq in plants.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are complex systems hierarchically organized and composed of various cell types. To understand the molecular underpinnings of complex plant systems, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for revealing high resolution of gene expression patterns at the cellular level and investigating the cell-type heterogeneity. Furthermore, scRNA-seq analysis of plant biosystems has great potential for generating new knowledge to inform plant biosystems design and synthetic biology, which aims to modify plants genetically/epigenetically through genome editing, engineering, or re-writing based on rational design for increasing crop yield and quality, promoting the bioeconomy and enhancing environmental sustainability. In particular, data from scRNA-seq studies can be utilized to facilitate the development of high-precision Build-Design-Test-Learn capabilities for maximizing the targeted performance of engineered plant biosystems while minimizing unintended side effects. To date, scRNA-seq has been demonstrated in a limited number of plant species, including model plants (e.g., Arabidopsis thaliana), agricultural crops (e.g., Oryza sativa), and bioenergy crops (e.g., Populus spp.). It is expected that future technical advancements will reduce the cost of scRNA-seq and consequently accelerate the application of this emerging technology in plants. In this review, we summarize current technical advancements in plant scRNA-seq, including sample preparation, sequencing, and data analysis, to provide guidance on how to choose the appropriate scRNA-seq methods for different types of plant samples. We then highlight various applications of scRNA-seq in both plant systems biology and plant synthetic biology research. Finally, we discuss the challenges and opportunities for the application of scRNA-seq in plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞转录组学在植物系统和合成生物学中的应用进展。
植物是由各种细胞类型组成的分级组织的复杂系统。为了解复杂植物系统的分子基础,单细胞 RNA 测序(scRNA-seq)已成为揭示细胞水平高分辨率基因表达模式和研究细胞类型异质性的有力工具。此外,scRNA-seq 分析植物生物系统具有巨大潜力,可为植物生物系统设计和合成生物学提供新知识。合成生物学旨在通过基因组编辑、工程或基于合理设计的重写来改变植物的基因/表观遗传,从而提高作物产量和质量,促进生物经济发展,增强环境可持续性。特别是,scRNA-seq 研究的数据可用于促进高精度 "构建-设计-测试-学习 "能力的发展,以最大限度地提高工程植物生物系统的目标性能,同时最大限度地减少意外副作用。迄今为止,scRNA-seq 已在数量有限的植物物种中得到了验证,包括模式植物(如拟南芥)、农作物(如黑麦草)和生物能源作物(如杨树属)。预计未来的技术进步将降低 scRNA-seq 的成本,从而加速这一新兴技术在植物中的应用。在本综述中,我们总结了当前植物 scRNA-seq 的技术进展,包括样本制备、测序和数据分析,为如何为不同类型的植物样本选择合适的 scRNA-seq 方法提供指导。然后,我们将重点介绍 scRNA-seq 在植物系统生物学和植物合成生物学研究中的各种应用。最后,我们讨论了 scRNA-seq 在植物中的应用所面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
A Light-Driven In Vitro Enzymatic Biosystem for the Synthesis of α-Farnesene from Methanol. Lipid-Encapsulated Engineered Bacterial Living Materials Inhibit Cyclooxygenase II to Enhance Doxorubicin Toxicity. Copper-Induced In Vivo Gene Amplification in Budding Yeast. Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology. Ice Cores as a Source for Antimicrobials: From Bioprospecting to Biodesign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1