Belinda Hernández, Adam H Dyer, Ciaran Finucane, Bernardo Nipoti, Roman Romero-Ortuno, Richard Reilly, Rose Anne Kenny
{"title":"The Impact of Type 2 Diabetes on Peripheral and Cerebral Hemodynamic Responses to Active Stand.","authors":"Belinda Hernández, Adam H Dyer, Ciaran Finucane, Bernardo Nipoti, Roman Romero-Ortuno, Richard Reilly, Rose Anne Kenny","doi":"10.1093/gerona/glae073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although type 2 diabetes mellitus (T2DM) is an established risk factor for cognitive impairment, the underlying mechanisms remain poorly explored. One potential mechanism may be through effects of T2DM on cerebral perfusion. The current study hypothesized that T2DM is associated with altered peripheral and central hemodynamic responses to orthostasis, which may in turn be associated with cognitive impairment in T2DM.</p><p><strong>Methods: </strong>A novel use of function-on-scalar regression, which allows the entire hemodynamic response curve to be modeled, was employed to assess the association between T2DM and hemodynamic responses to orthostasis. Logistic regression was used to assess the relationship between tissue saturation index (TSI), T2DM, and cognitive impairment. All analyses used cross-sectional data from Wave 3 of The Irish Longitudinal Study on Ageing (TILDA).</p><p><strong>Results: </strong>Of 2 984 older adults (aged 64.3 ± 8.0; 55% female), 189 (6.3%) had T2DM. T2DM was associated with many features that are indicative of autonomic dysfunction including a blunted peak heart rate and lower diastolic blood pressure. T2DM was associated with reduced TSI and also with greater odds of impaired performance on the Montreal Cognitive Assessment (odds ratio [OR]: 1.62; confidence interval [CI: 1.07, 2.56]; p = .019). Greater TSI was associated with lower odds of impaired performance (OR: 0.90, CI [0.81-0.99]; p = .047).</p><p><strong>Conclusions: </strong>T2DM was associated with impaired peripheral and cerebral hemodynamic responses to active stand. Both T2DM and reduced cerebral perfusion were associated with impaired cognitive performance. Altered cerebral perfusion may represent an important mechanism linking T2DM and adverse brain health outcomes in older adults.</p>","PeriodicalId":94243,"journal":{"name":"The journals of gerontology. Series A, Biological sciences and medical sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journals of gerontology. Series A, Biological sciences and medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Although type 2 diabetes mellitus (T2DM) is an established risk factor for cognitive impairment, the underlying mechanisms remain poorly explored. One potential mechanism may be through effects of T2DM on cerebral perfusion. The current study hypothesized that T2DM is associated with altered peripheral and central hemodynamic responses to orthostasis, which may in turn be associated with cognitive impairment in T2DM.
Methods: A novel use of function-on-scalar regression, which allows the entire hemodynamic response curve to be modeled, was employed to assess the association between T2DM and hemodynamic responses to orthostasis. Logistic regression was used to assess the relationship between tissue saturation index (TSI), T2DM, and cognitive impairment. All analyses used cross-sectional data from Wave 3 of The Irish Longitudinal Study on Ageing (TILDA).
Results: Of 2 984 older adults (aged 64.3 ± 8.0; 55% female), 189 (6.3%) had T2DM. T2DM was associated with many features that are indicative of autonomic dysfunction including a blunted peak heart rate and lower diastolic blood pressure. T2DM was associated with reduced TSI and also with greater odds of impaired performance on the Montreal Cognitive Assessment (odds ratio [OR]: 1.62; confidence interval [CI: 1.07, 2.56]; p = .019). Greater TSI was associated with lower odds of impaired performance (OR: 0.90, CI [0.81-0.99]; p = .047).
Conclusions: T2DM was associated with impaired peripheral and cerebral hemodynamic responses to active stand. Both T2DM and reduced cerebral perfusion were associated with impaired cognitive performance. Altered cerebral perfusion may represent an important mechanism linking T2DM and adverse brain health outcomes in older adults.