I. I. Mullyadzhanov, A. S. Gudko, R. I. Mullyadzhanov, A. A. Gelash
{"title":"Numerical direct scattering transform for breathers","authors":"I. I. Mullyadzhanov, A. S. Gudko, R. I. Mullyadzhanov, A. A. Gelash","doi":"10.1098/rspa.2023.0529","DOIUrl":null,"url":null,"abstract":"We consider the model of the focusing one-dimensional nonlinear Schrödinger equation (fNLSE) in the presence of an unstable constant background, which exhibits coherent solitary wave structures—breathers. Within the inverse scattering transform (IST) method, we study the problem of the scattering data numerical computation for a broad class of breathers localized in space. Such a direct scattering transform (DST) procedure requires a numerical solution of the auxiliary Zakharov–Shabat system with boundary conditions corresponding to the background. To find the solution, we compute the transfer matrix using the second-order Boffetta–Osborne approach and recently developed high-order numerical schemes based on the Magnus expansion. To recover the scattering data of breathers, we derive analytical relations between the scattering coefficients and the transfer matrix elements. Then we construct localized single- and multi-breather solutions and verify the developed numerical approach by recovering the complete set of scattering data with the built-in accuracy providing the information about the amplitude, velocity, phase and position of each breather. To combine the conventional IST approach with the efficient dressing method for multi-breather solutions, we derive the exact relation between the parameters of breathers in these two frameworks.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0529","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the model of the focusing one-dimensional nonlinear Schrödinger equation (fNLSE) in the presence of an unstable constant background, which exhibits coherent solitary wave structures—breathers. Within the inverse scattering transform (IST) method, we study the problem of the scattering data numerical computation for a broad class of breathers localized in space. Such a direct scattering transform (DST) procedure requires a numerical solution of the auxiliary Zakharov–Shabat system with boundary conditions corresponding to the background. To find the solution, we compute the transfer matrix using the second-order Boffetta–Osborne approach and recently developed high-order numerical schemes based on the Magnus expansion. To recover the scattering data of breathers, we derive analytical relations between the scattering coefficients and the transfer matrix elements. Then we construct localized single- and multi-breather solutions and verify the developed numerical approach by recovering the complete set of scattering data with the built-in accuracy providing the information about the amplitude, velocity, phase and position of each breather. To combine the conventional IST approach with the efficient dressing method for multi-breather solutions, we derive the exact relation between the parameters of breathers in these two frameworks.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.