A forecasting model for oil prices using a large set of economic indicators

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-02-26 DOI:10.1002/for.3087
Jihad El Hokayem, Ibrahim Jamali, Ale Hejase
{"title":"A forecasting model for oil prices using a large set of economic indicators","authors":"Jihad El Hokayem,&nbsp;Ibrahim Jamali,&nbsp;Ale Hejase","doi":"10.1002/for.3087","DOIUrl":null,"url":null,"abstract":"<p>This paper examines the predictability of the changes in Brent oil futures prices using a multilayer perceptron artificial neural network that exploits the information contained in the largest possible set of economic indicators. Feature engineering is employed to identify the most important predictors of the change in Brent oil futures prices. We find that oil-market-specific variables are important predictors. Our findings also suggest that forecasts of the change in the Brent oil futures prices from the multilayer perceptron that exploits the informational content of all and oil-market-specific predictors exhibit higher statistical forecast accuracy than the random walk. Tests of forecast optimality indicate that the forecasts generated using oil-market-specific predictors are optimal. We discuss the policymaking and practical relevance of our results.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3087","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the predictability of the changes in Brent oil futures prices using a multilayer perceptron artificial neural network that exploits the information contained in the largest possible set of economic indicators. Feature engineering is employed to identify the most important predictors of the change in Brent oil futures prices. We find that oil-market-specific variables are important predictors. Our findings also suggest that forecasts of the change in the Brent oil futures prices from the multilayer perceptron that exploits the informational content of all and oil-market-specific predictors exhibit higher statistical forecast accuracy than the random walk. Tests of forecast optimality indicate that the forecasts generated using oil-market-specific predictors are optimal. We discuss the policymaking and practical relevance of our results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大量经济指标的石油价格预测模型
本文采用多层感知器人工神经网络,利用尽可能多的经济指标集所包含的信息,研究布伦特石油期货价格变化的可预测性。采用特征工程来确定布伦特石油期货价格变化的最重要预测因素。我们发现,石油市场的特定变量是重要的预测因素。我们的研究结果还表明,利用所有预测因子和石油市场特定预测因子的信息含量的多层感知器对布伦特石油期货价格变化的预测比随机游走的统计预测精度更高。预测最优性测试表明,利用石油市场特定预测因子生成的预测是最优的。我们讨论了我们结果的决策和实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1