The Impact of the Hydrogen Index of the Process Fluid on Diamond Abrasive Wheel Performance

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Superhard Materials Pub Date : 2024-03-04 DOI:10.3103/S1063457624010064
V. I. Lavrinenko
{"title":"The Impact of the Hydrogen Index of the Process Fluid on Diamond Abrasive Wheel Performance","authors":"V. I. Lavrinenko","doi":"10.3103/S1063457624010064","DOIUrl":null,"url":null,"abstract":"<p>The hydrogen ion concentration (pH) of the process fluid, in the environment of which the tool and the workpiece contact and the polarization of the fluid occurs during friction, affects the process of diamond abrasive processing of tool materials. When processing hard alloy with a diamond tool, fluids with a neutral pH of 7 should be used, while for grinding oxide ceramics, process fluids with an elevated pH value of 8–9 are recommended. The use of polarized, specifically ion-activated process fluids during the machining process with a diamond tool on porous and conductive oxide-carbide ceramics makes it possible to decelerate wheel wear and bring down specific grinding energy consumption by up to 2 times.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"46 1","pages":"76 - 79"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457624010064","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen ion concentration (pH) of the process fluid, in the environment of which the tool and the workpiece contact and the polarization of the fluid occurs during friction, affects the process of diamond abrasive processing of tool materials. When processing hard alloy with a diamond tool, fluids with a neutral pH of 7 should be used, while for grinding oxide ceramics, process fluids with an elevated pH value of 8–9 are recommended. The use of polarized, specifically ion-activated process fluids during the machining process with a diamond tool on porous and conductive oxide-carbide ceramics makes it possible to decelerate wheel wear and bring down specific grinding energy consumption by up to 2 times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加工液氢指数对金刚石砂轮性能的影响
摘要 加工液的氢离子浓度(pH 值)会影响金刚石磨料加工工具材料的过程,因为在加工过程中,工具和工件会接触到加工液,并且在摩擦过程中加工液会发生极化。在使用金刚石工具加工硬质合金时,应使用 pH 值为 7 的中性加工液,而在磨削氧化物陶瓷时,建议使用 pH 值为 8-9 的高pH 值加工液。在使用金刚石工具加工多孔和导电氧化物-碳化物陶瓷的过程中,使用极化的、特殊离子活化的加工液可以减缓砂轮磨损,并将特定的磨削能耗最多降低 2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Superhard Materials
Journal of Superhard Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.80
自引率
66.70%
发文量
26
审稿时长
2 months
期刊介绍: Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.
期刊最新文献
Melting Temperatures of (Super)Hard Cubic Boron Pnictides Modeling the Densification of Boron Carbide Based Ceramic Materials under Flash Pressure Sintering Electrodynamic Properties of AlN–C and AlN–C–Mo Composites Produced by Pressureless Sintering Original Orthorhombic Tetrahedral-Trigonal Hybrid Allotropes Cn (n = 8, 10, 12, 14) with Ethene–Like and Propadiene–Like Units: Crystal Engineering and Quantum Mechanical Calculations Effect of Sintering Parameters and Liquid Phase Content on the Properties of Fe-Rich Based Impregnated Diamond Bit Matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1