Ana Vázquez-Ágredos, Paula Rovira, Blanca Gutiérrez, Fernando Gámiz, Milagros Gallo
{"title":"Identification of differentially expressed miRNA in the rat hippocampus during adolescence through an epigenome-wide analysis.","authors":"Ana Vázquez-Ágredos, Paula Rovira, Blanca Gutiérrez, Fernando Gámiz, Milagros Gallo","doi":"10.1159/000538168","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Epigenetic mechanisms involving microRNAs (miRNAs) play a fundamental role in many biological processes, particularly during prenatal and early postnatal development. Their role in adolescent brain development, however, has been poorly described. The present study aims to explore miRNA expression in the hippocampus during adolescence compared to adulthood in rats.</p><p><strong>Method: </strong>The brains of female and male Wistar rats were extracted and the hippocampus was freshly dissected at postnatal day 41 (adolescence) and postnatal day 98 (adulthood). An epigenome-wide analysis was conducted to identify the miRNAs significantly expressed in adolescence compared to adulthood. Additionally, target genes of such miRNAs were considered to perform an exploratory gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.</p><p><strong>Results: </strong>We identified 16 differentially expressed miRNAs in adolescent male rats compared with adult male rats, and 4 differentially expressed miRNAs in adolescent females compared with adult females. Enrichment analysis reinforced that the target genes found are related to neurodevelopmental processes such as cell proliferation, cell migration and nervous system development.</p><p><strong>Conclusion: </strong>Our findings suggest a complex pattern of miRNA expression during adolescence, which differs from that in adulthood. The differential expression of miRNA in the hippocampus during adolescence may be associated with the late developmental changes occurring in this brain region. Furthermore, the observed sex differences in miRNA expression patterns indicate potential sexual differentiation in hippocampal development. Further comprehensive investigations are needed to elucidate the roles of miRNA in normal brain development.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000538168","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Epigenetic mechanisms involving microRNAs (miRNAs) play a fundamental role in many biological processes, particularly during prenatal and early postnatal development. Their role in adolescent brain development, however, has been poorly described. The present study aims to explore miRNA expression in the hippocampus during adolescence compared to adulthood in rats.
Method: The brains of female and male Wistar rats were extracted and the hippocampus was freshly dissected at postnatal day 41 (adolescence) and postnatal day 98 (adulthood). An epigenome-wide analysis was conducted to identify the miRNAs significantly expressed in adolescence compared to adulthood. Additionally, target genes of such miRNAs were considered to perform an exploratory gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.
Results: We identified 16 differentially expressed miRNAs in adolescent male rats compared with adult male rats, and 4 differentially expressed miRNAs in adolescent females compared with adult females. Enrichment analysis reinforced that the target genes found are related to neurodevelopmental processes such as cell proliferation, cell migration and nervous system development.
Conclusion: Our findings suggest a complex pattern of miRNA expression during adolescence, which differs from that in adulthood. The differential expression of miRNA in the hippocampus during adolescence may be associated with the late developmental changes occurring in this brain region. Furthermore, the observed sex differences in miRNA expression patterns indicate potential sexual differentiation in hippocampal development. Further comprehensive investigations are needed to elucidate the roles of miRNA in normal brain development.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.