Innate immune signal transduction pathways to fungal infection: Components and regulation

Tian Chen , Chengjiang Gao
{"title":"Innate immune signal transduction pathways to fungal infection: Components and regulation","authors":"Tian Chen ,&nbsp;Chengjiang Gao","doi":"10.1016/j.cellin.2024.100154","DOIUrl":null,"url":null,"abstract":"<div><p><em>Candida</em> species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"3 3","pages":"Article 100154"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772892724000099/pdfft?md5=d4276ae414de9b9ba8958cee89aa85d4&pid=1-s2.0-S2772892724000099-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell insight","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772892724000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Candida species are significant causes of mucosal and systemic infections in immune compromised populations, including HIV-infected individuals and cancer patients. Drug resistance and toxicity have limited the use of anti-fungal drugs. A good comprehension of the nature of the immune responses to the pathogenic fungi will aid in the developing of new approaches to the treatment of fungal diseases. In recent years, extensive research has been done to understand the host defending systems to fungal infections. In this review, we described how pattern recognition receptors senses the cognate fungal ligands and the cellular and molecular mechanisms of anti-fungal innate immune responses. Furthermore, particular focus is placed on how anti-fungal signal transduction cascades are being activated for host defense and being modulated to better treat the infections in terms of immunotherapy. Understanding the role that these pathways have in mediating host anti-fungal immunity will be crucial for future therapeutic development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真菌感染的先天免疫信号转导途径:成分与调节
念珠菌是免疫受损人群(包括艾滋病毒感染者和癌症患者)黏膜和全身感染的重要原因。抗药性和毒性限制了抗真菌药物的使用。充分了解病原真菌免疫反应的性质将有助于开发治疗真菌疾病的新方法。近年来,人们为了解宿主对真菌感染的防御系统进行了大量研究。在这篇综述中,我们描述了模式识别受体如何感知同源真菌配体,以及抗真菌先天免疫反应的细胞和分子机制。此外,我们还特别关注了抗真菌信号转导级联是如何被激活以进行宿主防御的,以及如何被调节以更好地治疗感染的免疫疗法。了解这些途径在介导宿主抗真菌免疫中的作用对未来的治疗开发至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell insight
Cell insight Neuroscience (General), Biochemistry, Genetics and Molecular Biology (General), Cancer Research, Cell Biology
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
35 days
期刊最新文献
Cover Phase-separated chromatin compartments: Orchestrating gene expression through condensation Transcripts derived from the neocortical enhancer of Ctnnb1 promote the enhancer-promoter interaction and maintain Ctnnb1 transcription APC orchestrates microtubule dynamics by acting as a positive regulator of KIF2A and a negative regulator of CLASPs Just a SNP away: The future of in vivo massively parallel reporter assay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1