Disconnectivity graphs for visualizing combinatorial optimization problems: challenges of embedding to Ising machines

Dmitrii Dobrynin, Adrien Renaudineau, Mohammad Hizzani, Dmitri Strukov, Masoud Mohseni, John Paul Strachan
{"title":"Disconnectivity graphs for visualizing combinatorial optimization problems: challenges of embedding to Ising machines","authors":"Dmitrii Dobrynin, Adrien Renaudineau, Mohammad Hizzani, Dmitri Strukov, Masoud Mohseni, John Paul Strachan","doi":"arxiv-2403.01320","DOIUrl":null,"url":null,"abstract":"Physics-based Ising machines (IM) have risen to the challenge of solving hard\ncombinatorial optimization problems with higher speed and better energy\nefficiency. Generally, such dedicated systems employ local search heuristics to\ntraverse energy landscapes in searching for optimal solutions. Extending\nlandscape geometry visualization tools, disconnectivity graphs, we quantify and\naddress some of the major challenges met by IMs in the field of combinatorial\noptimization. Using efficient sampling methods, we visually capture landscapes\nof problems having diverse structure and hardness and featuring strong\ndegeneracies, which act as entropic barriers for IMs. Furthermore, we\ninvestigate energy barriers, local minima, and configuration space clustering\neffects caused by locality reduction methods when embedding combinatorial\nproblems to the Ising hardware. For this purpose, we sample disconnectivity\ngraphs of PUBO energy landscapes and their different QUBO mappings accounting\nfor both local minima and saddle regions. We demonstrate that QUBO energy\nlandscape properties lead to the subpar performance of quadratic IMs and\nsuggest directions for their improvement.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.01320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physics-based Ising machines (IM) have risen to the challenge of solving hard combinatorial optimization problems with higher speed and better energy efficiency. Generally, such dedicated systems employ local search heuristics to traverse energy landscapes in searching for optimal solutions. Extending landscape geometry visualization tools, disconnectivity graphs, we quantify and address some of the major challenges met by IMs in the field of combinatorial optimization. Using efficient sampling methods, we visually capture landscapes of problems having diverse structure and hardness and featuring strong degeneracies, which act as entropic barriers for IMs. Furthermore, we investigate energy barriers, local minima, and configuration space clustering effects caused by locality reduction methods when embedding combinatorial problems to the Ising hardware. For this purpose, we sample disconnectivity graphs of PUBO energy landscapes and their different QUBO mappings accounting for both local minima and saddle regions. We demonstrate that QUBO energy landscape properties lead to the subpar performance of quadratic IMs and suggest directions for their improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于组合优化问题可视化的断连图:嵌入伊辛机的挑战
基于物理的伊辛机(Ising machine,IM)以更高的速度和更好的能效迎接了解决硬组合优化问题的挑战。一般来说,这类专用系统采用局部搜索启发式方法遍历能量景观来寻找最优解。通过扩展地景几何可视化工具--断开图,我们量化并解决了组合优化领域中 IM 所面临的一些主要挑战。利用高效的采样方法,我们直观地捕捉到了具有不同结构和硬度的问题的景观,这些问题具有很强的退行性,成为 IM 的熵障。此外,我们还研究了将组合问题嵌入伊辛硬件时,由局部性降低方法引起的能量障碍、局部最小值和配置空间集群效应。为此,我们采样了 PUBO 能量图及其不同 QUBO 映射的断开图,并考虑了局部最小值和鞍区。我们证明了 QUBO 能量景观特性导致二次 IM 性能不佳,并提出了改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1