L. I. U. Huanle, X. U. E. Shifeng, S. U. N. Zhiyang, Zhou Chao
{"title":"Development and field application of a jetting and helical combination tool","authors":"L. I. U. Huanle, X. U. E. Shifeng, S. U. N. Zhiyang, Zhou Chao","doi":"10.1007/s13202-024-01757-z","DOIUrl":null,"url":null,"abstract":"<p>Liquid loading occurs in gas wells after a period of production, and the vortex drainage gas recovery technology can alleviate this problem by removing liquid. To substantially enhance the efficiency of this technology, a novel tool combining jetting and helical mechanisms has been introduced. To validate its effectiveness, a laboratory system for detailed analysis of pressure drops by using various tools at multiple gas flow rates has been set up. The analysis approach encompasses both single-factor and orthogonal analyses of tool structure parameters to find out the optimal tool structural parameters under different operating conditions. Consequently, a correlation between the gas flow rates observed in controlled laboratory environments and those in actual gas wells has been established. The study indicates that the tool’s main structural parameters significantly impact pressure drops along the wellbore. Furthermore, it is evident that distinct well profiles require unique tool setups to minimize such pressure drop. Field tests of the optimized tool have shown notable enhancements: The average gas flow rate increased by 25.9%, reaching 5.39 × 10<sup>4</sup> m<sup>3</sup>/d (1.90 × 10<sup>6</sup> scf/d), while the average liquid flow rate increased by 20.1%, reaching 1.46 m<sup>3</sup>/d (9.18 bbl/d). These results highlight the superior drainage stimulation effect of the new jetting and helical combination tool, presenting novel insights and methodologies for enhancing gas recovery in liquid-loaded gas wells.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"155 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01757-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid loading occurs in gas wells after a period of production, and the vortex drainage gas recovery technology can alleviate this problem by removing liquid. To substantially enhance the efficiency of this technology, a novel tool combining jetting and helical mechanisms has been introduced. To validate its effectiveness, a laboratory system for detailed analysis of pressure drops by using various tools at multiple gas flow rates has been set up. The analysis approach encompasses both single-factor and orthogonal analyses of tool structure parameters to find out the optimal tool structural parameters under different operating conditions. Consequently, a correlation between the gas flow rates observed in controlled laboratory environments and those in actual gas wells has been established. The study indicates that the tool’s main structural parameters significantly impact pressure drops along the wellbore. Furthermore, it is evident that distinct well profiles require unique tool setups to minimize such pressure drop. Field tests of the optimized tool have shown notable enhancements: The average gas flow rate increased by 25.9%, reaching 5.39 × 104 m3/d (1.90 × 106 scf/d), while the average liquid flow rate increased by 20.1%, reaching 1.46 m3/d (9.18 bbl/d). These results highlight the superior drainage stimulation effect of the new jetting and helical combination tool, presenting novel insights and methodologies for enhancing gas recovery in liquid-loaded gas wells.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies