{"title":"Prediction of Forest Fire Risk for Artillery Military Training using Weighted Support Vector Machine for Imbalanced Data","authors":"Ji Hyun Nam, Jongmin Mun, Seongil Jo, Jaeoh Kim","doi":"10.1007/s00357-024-09467-1","DOIUrl":null,"url":null,"abstract":"<p>Since the 1953 truce, the Republic of Korea Army (ROKA) has regularly conducted artillery training, posing a risk of wildfires — a threat to both the environment and the public perception of national defense. To assess this risk and aid decision-making within the ROKA, we built a predictive model of wildfires triggered by artillery training. To this end, we combined the ROKA dataset with meteorological database. Given the infrequent occurrence of wildfires (imbalance ratio <span>\\(\\approx \\)</span> 1:24 in our dataset), achieving balanced detection of wildfire occurrences and non-occurrences is challenging. Our approach combines a weighted support vector machine with a Gaussian mixture-based oversampling, effectively penalizing misclassification of the wildfires. Applied to our dataset, our method outperforms traditional algorithms (G-mean=0.864, sensitivity=0.956, specificity= 0.781), indicating balanced detection. This study not only helps reduce wildfires during artillery trainings but also provides a practical wildfire prediction method for similar climates worldwide.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"114 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09467-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Since the 1953 truce, the Republic of Korea Army (ROKA) has regularly conducted artillery training, posing a risk of wildfires — a threat to both the environment and the public perception of national defense. To assess this risk and aid decision-making within the ROKA, we built a predictive model of wildfires triggered by artillery training. To this end, we combined the ROKA dataset with meteorological database. Given the infrequent occurrence of wildfires (imbalance ratio \(\approx \) 1:24 in our dataset), achieving balanced detection of wildfire occurrences and non-occurrences is challenging. Our approach combines a weighted support vector machine with a Gaussian mixture-based oversampling, effectively penalizing misclassification of the wildfires. Applied to our dataset, our method outperforms traditional algorithms (G-mean=0.864, sensitivity=0.956, specificity= 0.781), indicating balanced detection. This study not only helps reduce wildfires during artillery trainings but also provides a practical wildfire prediction method for similar climates worldwide.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.