Heterogeneous Li coordination in Solvent-in-Salt electrolytes enables high Li transference numbers

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL Faraday Discussions Pub Date : 2024-03-05 DOI:10.1039/d4fd00012a
Anne Hockmann, Florian Ackermann, Diddo Diddens, Isidora Cekic-Laskovic, Monika Schönhoff
{"title":"Heterogeneous Li coordination in Solvent-in-Salt electrolytes enables high Li transference numbers","authors":"Anne Hockmann, Florian Ackermann, Diddo Diddens, Isidora Cekic-Laskovic, Monika Schönhoff","doi":"10.1039/d4fd00012a","DOIUrl":null,"url":null,"abstract":"The transport properties and the underlying coordination structure of a ternary electrolyte consisting of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1,2-dimethoxyethane (DME), and 1,3-dioxolane (DOL) is studied over a wide concentration range up to a Solvent-in-Salt (SiS) electrolyte. Among other advantages for next-generation battery application, SiS electrolytes offer high lithium transference numbers (tLi) of 0.73. We analyze the transport mechanism by electrophoretic NMR (eNMR), providing mobilities µi of all species. Intriguingly, in the SiS region, the mobility of the neutral species DME exceeds the cation mobility (µ<small><sub>DME</sub></small> &gt; µ<small><sub>Li</sub></small>), suggesting a heterogeneous transport mechanism, where the Li<small><sup>+</sup></small> mobility is averaged over different species. Based on Raman spectroscopy, NMR spectroscopy and MD simulations, we derive a model for a concentration-dependent Li<small><sup>+</sup></small> coordination environment with a heterogeneous Li<small><sup>+</sup></small> coordination in the SiS region, where the 1<small><sup>st</sup></small> coordination shell either consists of TFSI<small><sup>-</sup></small> and DOL only, or of DME, TFSI<small><sup>-</sup></small>, and DOL. Lithium ions partially coordinated by DME migrate faster in an electric field, in contrast to lithium ions solely coordinated by anions and DOL molecules, explaining the peculiarity of the rapidly migrating neutral DME molecules. Further, DME is identified as an exclusive bidentate ligand, while TFSI<small><sup>-</sup></small> and DOL act as bridging ligands coordinating different Li<small><sup>+</sup></small> ions. Thus, Li<small><sup>+</sup></small> coordination heterogeneity is the basis for Li<small><sup>+</sup></small> transport heterogeneity and for achieving very high Li<small><sup>+</sup></small> transference numbers. In addition, an effective dynamic decoupling of Li<small><sup>+</sup></small> and anions occurs with an Onsager coefficient σ<small><sub>+-</sub></small> ≈ 0. These results provide a deeper understanding of the very efficient lithium ion transport in SiS electrolytes with potential to bring further improvements for battery applications.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00012a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The transport properties and the underlying coordination structure of a ternary electrolyte consisting of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1,2-dimethoxyethane (DME), and 1,3-dioxolane (DOL) is studied over a wide concentration range up to a Solvent-in-Salt (SiS) electrolyte. Among other advantages for next-generation battery application, SiS electrolytes offer high lithium transference numbers (tLi) of 0.73. We analyze the transport mechanism by electrophoretic NMR (eNMR), providing mobilities µi of all species. Intriguingly, in the SiS region, the mobility of the neutral species DME exceeds the cation mobility (µDME > µLi), suggesting a heterogeneous transport mechanism, where the Li+ mobility is averaged over different species. Based on Raman spectroscopy, NMR spectroscopy and MD simulations, we derive a model for a concentration-dependent Li+ coordination environment with a heterogeneous Li+ coordination in the SiS region, where the 1st coordination shell either consists of TFSI- and DOL only, or of DME, TFSI-, and DOL. Lithium ions partially coordinated by DME migrate faster in an electric field, in contrast to lithium ions solely coordinated by anions and DOL molecules, explaining the peculiarity of the rapidly migrating neutral DME molecules. Further, DME is identified as an exclusive bidentate ligand, while TFSI- and DOL act as bridging ligands coordinating different Li+ ions. Thus, Li+ coordination heterogeneity is the basis for Li+ transport heterogeneity and for achieving very high Li+ transference numbers. In addition, an effective dynamic decoupling of Li+ and anions occurs with an Onsager coefficient σ+- ≈ 0. These results provide a deeper understanding of the very efficient lithium ion transport in SiS electrolytes with potential to bring further improvements for battery applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐溶剂电解质中的异质锂配位实现了高锂离子转移数量
研究了由双(三氟甲磺酰)亚胺锂(LiTFSI)、1,2-二甲氧基乙烷(DME)和 1,3-二氧戊环(DOL)组成的三元电解质在盐溶剂(SiS)电解质的宽浓度范围内的传输特性和基本配位结构。SiS 电解质具有 0.73 的高锂传输数(tLi),是新一代电池应用的优势之一。我们通过电泳核磁共振(eNMR)分析了传输机制,提供了所有物种的迁移率 µi。有趣的是,在 SiS 区域,中性物种 DME 的迁移率超过了阳离子的迁移率(µDME > µLi),这表明这是一种异质迁移机制,其中 Li+ 的迁移率是不同物种的平均迁移率。基于拉曼光谱、核磁共振光谱和 MD 模拟,我们推导出了一个浓度依赖性的 Li+ 配位环境模型,该模型在 SiS 区域具有异质 Li+ 配位,其中第 1 配位层要么仅由 TFSI- 和 DOL 组成,要么由 DME、TFSI- 和 DOL 组成。与仅由阴离子和 DOL 分子配位的锂离子相比,部分由 DME 配位的锂离子在电场中迁移得更快,这也解释了快速迁移的中性 DME 分子的特殊性。此外,DME 被确定为唯一的双齿配体,而 TFSI- 和 DOL 则作为桥配体配位不同的 Li+ 离子。因此,Li+配位异质性是实现 Li+ 传输异质性和极高 Li+ 传输数的基础。此外,Li+ 与阴离子之间还存在有效的动态解耦,其昂萨格系数 σ+- ≈ 0。这些结果加深了人们对 SiS 电解质中高效锂离子传输的理解,有望进一步改善电池应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
期刊最新文献
Optical materials discovery and design via federated databases and machine learning Seeing nanoscale electrocatalytic reactions at individual MoS2 particles under an optical microscope: probing sub-mM oxygen reduction reaction Electrochemical Nucleation and Growth Kinetics: Insights from Single Particle Scanning Electrochemical Cell Microscopy Studies Single-molecule electrochemical imaging of 'split waves' in the electrocatalytic (EC') mechanism Advanced Algorithm for Step Detection in Single-Entity Electrochemistry: A Comparative Study of Wavelet Transforms and Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1