L. A. Savchyna, N. A. Klymenko, O. O. Samsoni-Todorova
{"title":"Redox Reactions in Natural and Waste Water Treatment Processes","authors":"L. A. Savchyna, N. A. Klymenko, O. O. Samsoni-Todorova","doi":"10.3103/S1063455X24010077","DOIUrl":null,"url":null,"abstract":"<p>The reasonability of using the redox potential to characterize the state of a certain water system was substantiated. Peat fulvic acids characteristic for the natural water of the Dnipro River were selected as a target compound for study before and after the adsorption processes. Fruitstone-derived activated carbon (FDAC), FDAC oxidized by hydrogen peroxide (FADC-O), and FDAC modified with iron oxides (FDAC-Fe) were used as adsorbents. All the systems with both distilled and tap water were shown to have an oxidative character for the period of study, especially after sodium azide and hydrogen peroxide were added. The introduction of fulvic acids into the system neutralized this effect due to their interaction. The redox potential was proposed to use for simplified measurement as an indicator of pollution in water of different types.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24010077","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The reasonability of using the redox potential to characterize the state of a certain water system was substantiated. Peat fulvic acids characteristic for the natural water of the Dnipro River were selected as a target compound for study before and after the adsorption processes. Fruitstone-derived activated carbon (FDAC), FDAC oxidized by hydrogen peroxide (FADC-O), and FDAC modified with iron oxides (FDAC-Fe) were used as adsorbents. All the systems with both distilled and tap water were shown to have an oxidative character for the period of study, especially after sodium azide and hydrogen peroxide were added. The introduction of fulvic acids into the system neutralized this effect due to their interaction. The redox potential was proposed to use for simplified measurement as an indicator of pollution in water of different types.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.