Estimation of regime-switching diffusions via Fourier transforms

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS Statistics and Computing Pub Date : 2024-03-05 DOI:10.1007/s11222-024-10397-6
Thomas Lux
{"title":"Estimation of regime-switching diffusions via Fourier transforms","authors":"Thomas Lux","doi":"10.1007/s11222-024-10397-6","DOIUrl":null,"url":null,"abstract":"<p>In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration of the proposed algorithm.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"10 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10397-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration of the proposed algorithm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过傅立叶变换估计制度切换扩散
本文提出了一种对制度切换扩散进行最大似然估计的算法。该方法利用傅立叶变换对状态密度时间演化的福克-普朗克方程或前向科尔莫格罗方程组进行数值求解。蒙特卡罗模拟证实了这种方法在中等样本量时的理论预期一致性,以及它在经济学和生物学中某些具有中等数量状态和参数的制度转换扩散的实际可行性。对动物运动数据的应用是对所提算法的一个说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
期刊最新文献
funBIalign: a hierachical algorithm for functional motif discovery based on mean squared residue scores. Accelerated failure time models with error-prone response and nonlinear covariates Sequential model identification with reversible jump ensemble data assimilation method Hidden Markov models for multivariate panel data Shrinkage for extreme partial least-squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1