Wei Wu, Zhenglin Hu, Zhengfei Zhao, Aoxuan Wang, Jiayan Luo
{"title":"A Functional Cathode Sodium Compensation Agent for Stable Sodium-Ion Batteries","authors":"Wei Wu, Zhenglin Hu, Zhengfei Zhao, Aoxuan Wang, Jiayan Luo","doi":"10.1016/j.gee.2024.02.009","DOIUrl":null,"url":null,"abstract":"Hard carbon (HC) is widely used in sodium-ion batteries (SIBs), but its performance has always been limited by low initial Coulombic efficiency (ICE) and cycling stability. Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed by HC anode. Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption. Here, we propose 1,2-dihydroxybenzene Na salt (NaDB) as a cathode compensation agent with high specific capacity (347.9 mAh g), lower desodiation potential (2.4–2.8 V) and high utilization (99%). Meanwhile, its byproduct could functionalize HC with more CO groups and promotes its reversible capacity. Consequently, the presodiation hard carbon (pHC) anode exhibits highly reversible capacity of 204.7 mAh g with 98% retention at 5 C rate over 1000 cycles. Moreover, with 5 wt% NaDB initially coated on the NaV(PO) (NVP) cathode, the capacity retention of NVP + NaDB|HC cell could increase form 36%–89% after 1000 cycles at 1 C rate. This work provides a new avenue to improve SIBs reversible capacity and cycling performance through designing functional cathode compensation agent.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"12 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.02.009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hard carbon (HC) is widely used in sodium-ion batteries (SIBs), but its performance has always been limited by low initial Coulombic efficiency (ICE) and cycling stability. Cathode compensation agent is a favorable strategy to make up for the loss of active sodium ions consumed by HC anode. Yet it lacks agent that effectively decomposes to increase the active sodium ions as well as regulate carbon defects for decreasing the irreversible sodium ions consumption. Here, we propose 1,2-dihydroxybenzene Na salt (NaDB) as a cathode compensation agent with high specific capacity (347.9 mAh g), lower desodiation potential (2.4–2.8 V) and high utilization (99%). Meanwhile, its byproduct could functionalize HC with more CO groups and promotes its reversible capacity. Consequently, the presodiation hard carbon (pHC) anode exhibits highly reversible capacity of 204.7 mAh g with 98% retention at 5 C rate over 1000 cycles. Moreover, with 5 wt% NaDB initially coated on the NaV(PO) (NVP) cathode, the capacity retention of NVP + NaDB|HC cell could increase form 36%–89% after 1000 cycles at 1 C rate. This work provides a new avenue to improve SIBs reversible capacity and cycling performance through designing functional cathode compensation agent.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.