A Deep Learning Framework for Diffeomorphic Mapping Problems via Quasi-conformal Geometry Applied to Imaging

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-05 DOI:10.1137/22m1516099
Qiguang Chen, Zhiwen Li, Lok Ming Lui
{"title":"A Deep Learning Framework for Diffeomorphic Mapping Problems via Quasi-conformal Geometry Applied to Imaging","authors":"Qiguang Chen, Zhiwen Li, Lok Ming Lui","doi":"10.1137/22m1516099","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 501-539, March 2024. <br/> Abstract. Many imaging problems can be formulated as mapping problems. A general mapping problem aims to obtain an optimal mapping that minimizes an energy functional subject to the given constraints. Existing methods to solve the mapping problems are often inefficient and can sometimes get trapped in local minima. An extra challenge arises when the optimal mapping is required to be diffeomorphic. In this work, we address the problem by proposing a deep-learning framework based on the Quasiconformal (QC) Teichmüller theories. The main strategy is to learn the Beltrami coefficient (BC) that represents a mapping as the latent feature vector in the deep neural network. The BC measures the local geometric distortion under the mapping, with which the interpretability of the deep neural network can be enhanced. Under this framework, the diffeomorphic property of the mapping can be controlled via a simple activation function within the network. The optimal mapping can also be easily regularized by integrating the BC into the loss function. A crucial advantage of the proposed framework is that once the network is successfully trained, the optimized mapping corresponding to each input data information can be obtained in real time. To examine the efficacy of the proposed framework, we apply the method to the diffeomorphic image registration problem. Experimental results outperform other state-of-the-art registration algorithms in both efficiency and accuracy, which demonstrate the effectiveness of our proposed framework to solve the mapping problem.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1516099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 501-539, March 2024.
Abstract. Many imaging problems can be formulated as mapping problems. A general mapping problem aims to obtain an optimal mapping that minimizes an energy functional subject to the given constraints. Existing methods to solve the mapping problems are often inefficient and can sometimes get trapped in local minima. An extra challenge arises when the optimal mapping is required to be diffeomorphic. In this work, we address the problem by proposing a deep-learning framework based on the Quasiconformal (QC) Teichmüller theories. The main strategy is to learn the Beltrami coefficient (BC) that represents a mapping as the latent feature vector in the deep neural network. The BC measures the local geometric distortion under the mapping, with which the interpretability of the deep neural network can be enhanced. Under this framework, the diffeomorphic property of the mapping can be controlled via a simple activation function within the network. The optimal mapping can also be easily regularized by integrating the BC into the loss function. A crucial advantage of the proposed framework is that once the network is successfully trained, the optimized mapping corresponding to each input data information can be obtained in real time. To examine the efficacy of the proposed framework, we apply the method to the diffeomorphic image registration problem. Experimental results outperform other state-of-the-art registration algorithms in both efficiency and accuracy, which demonstrate the effectiveness of our proposed framework to solve the mapping problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将准共形几何应用于成像的深度学习框架,用于解决衍射映射问题
SIAM 影像科学杂志》第 17 卷第 1 期第 501-539 页,2024 年 3 月。 摘要许多成像问题都可以表述为映射问题。一般的映射问题旨在获得最优映射,在给定约束条件下使能量函数最小化。解决映射问题的现有方法通常效率不高,有时还会陷入局部极小值。如果要求最优映射具有差分同构性,则会面临额外的挑战。在这项工作中,我们提出了一个基于准共形(QC)Teichmüller 理论的深度学习框架来解决这个问题。主要策略是学习代表映射的贝尔特拉米系数(BC),将其作为深度神经网络中的潜在特征向量。贝特拉米系数测量映射下的局部几何失真,从而提高深度神经网络的可解释性。在此框架下,映射的差异形态属性可通过网络内的简单激活函数进行控制。通过将 BC 整合到损失函数中,还可以轻松地对最优映射进行正则化。拟议框架的一个重要优势是,一旦网络训练成功,就能实时获得与每个输入数据信息相对应的优化映射。为了检验拟议框架的有效性,我们将该方法应用于差分图像配准问题。实验结果在效率和准确性上都优于其他最先进的配准算法,这证明了我们提出的框架在解决映射问题上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1