Piotr Olejnik, Kasper Buczma, Agnieszka Cudnoch-Jędrzejewska, Kaja Kasarełło
{"title":"Involvement of gut microbiota in multiple sclerosis-review of a new pathophysiological hypothesis and potential treatment target.","authors":"Piotr Olejnik, Kasper Buczma, Agnieszka Cudnoch-Jędrzejewska, Kaja Kasarełło","doi":"10.1007/s12026-024-09471-y","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic inflammatory disease that leads to demyelination and damage to the central nervous system. It is well known, the significance of the involvement and influence of the immune system in the development and course of MS. Nowadays, more and more studies are demonstrating that an important factor that affects the action of the immune system is the gut microbiota. Changes in the composition and interrelationships in the gut microbiota have a significant impact on the course of MS. Dysbiosis affects the disease course mainly by influencing the immune system directly but also by modifying the secreted metabolites and increasing mucosal permeability. The essential metabolites affecting the course of MS are short-chain fatty acids, which alter pro- and anti-inflammatory responses in the immune system but also increase the permeability of the intestinal wall and the blood-brain barrier. Dietary modification alone can have a significant impact on MS. Based on these interactions, new treatments for MS are being developed, including probiotics administration, supplementation of bacterial metabolites, fecal microbiota transplantation, and dietary changes. Further studies may serve to develop new drugs and therapeutic approaches for MS.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"554-565"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09471-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that leads to demyelination and damage to the central nervous system. It is well known, the significance of the involvement and influence of the immune system in the development and course of MS. Nowadays, more and more studies are demonstrating that an important factor that affects the action of the immune system is the gut microbiota. Changes in the composition and interrelationships in the gut microbiota have a significant impact on the course of MS. Dysbiosis affects the disease course mainly by influencing the immune system directly but also by modifying the secreted metabolites and increasing mucosal permeability. The essential metabolites affecting the course of MS are short-chain fatty acids, which alter pro- and anti-inflammatory responses in the immune system but also increase the permeability of the intestinal wall and the blood-brain barrier. Dietary modification alone can have a significant impact on MS. Based on these interactions, new treatments for MS are being developed, including probiotics administration, supplementation of bacterial metabolites, fecal microbiota transplantation, and dietary changes. Further studies may serve to develop new drugs and therapeutic approaches for MS.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.