Dual subpopulation artificial bee colony algorithm based on individual gradation

IF 5 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Egyptian Informatics Journal Pub Date : 2024-03-01 DOI:10.1016/j.eij.2024.100452
Zhaolu Guo , Hongjin Li , Kangshun Li
{"title":"Dual subpopulation artificial bee colony algorithm based on individual gradation","authors":"Zhaolu Guo ,&nbsp;Hongjin Li ,&nbsp;Kangshun Li","doi":"10.1016/j.eij.2024.100452","DOIUrl":null,"url":null,"abstract":"<div><p>To boost the search performance of Artificial Bee Colony (ABC) algorithm for handling some complicated optimization problems, a dual subpopulation ABC based on individual gradation (DPGABC) is presented. In DPGABC, the whole population is segmented into two subpopulations with different gradations. Then, the subpopulations respectively utilize the strategies with different characteristics as the candidate strategies. So the individuals can exploit the benefits of various strategies to optimize the search performance. Meanwhile, the dual subpopulation mechanism can maintain good population diversity while achieving good convergence performance. In addition, a knowledge-driven parameter update mechanism is designed to improve the convergence performance. The CEC2014 test set is applied for relevant experiments to validate the performance of DPGABC. From the results, DPGABC performs well on most functions.</p></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S111086652400015X/pdfft?md5=1d97602897374278d036e61c9da410dc&pid=1-s2.0-S111086652400015X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S111086652400015X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To boost the search performance of Artificial Bee Colony (ABC) algorithm for handling some complicated optimization problems, a dual subpopulation ABC based on individual gradation (DPGABC) is presented. In DPGABC, the whole population is segmented into two subpopulations with different gradations. Then, the subpopulations respectively utilize the strategies with different characteristics as the candidate strategies. So the individuals can exploit the benefits of various strategies to optimize the search performance. Meanwhile, the dual subpopulation mechanism can maintain good population diversity while achieving good convergence performance. In addition, a knowledge-driven parameter update mechanism is designed to improve the convergence performance. The CEC2014 test set is applied for relevant experiments to validate the performance of DPGABC. From the results, DPGABC performs well on most functions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于个体分级的双子群人工蜂群算法
为了提高人工蜂群算法(ABC)的搜索性能,以处理一些复杂的优化问题,本文提出了一种基于个体分级的双子蜂群算法(DPGABC)。在 DPGABC 算法中,整个种群被划分为两个不同等级的子种群。然后,子群分别利用具有不同特征的策略作为候选策略。这样,个体就能利用各种策略的优势来优化搜索性能。同时,双子种群机制既能保持良好的种群多样性,又能实现良好的收敛性能。此外,还设计了知识驱动的参数更新机制,以提高收敛性能。为了验证 DPGABC 的性能,我们应用 CEC2014 测试集进行了相关实验。从结果来看,DPGABC 在大多数函数上都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Egyptian Informatics Journal
Egyptian Informatics Journal Decision Sciences-Management Science and Operations Research
CiteScore
11.10
自引率
1.90%
发文量
59
审稿时长
110 days
期刊介绍: The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.
期刊最新文献
HD-MVCNN: High-density ECG signal based diabetic prediction and classification using multi-view convolutional neural network A hybrid encryption algorithm based approach for secure privacy protection of big data in hospitals A new probabilistic linguistic decision-making process based on PL-BWM and improved three-way TODIM methods Interval valued inventory model with different payment strategies for green products under interval valued Grey Wolf optimizer Algorithm fitness function Intelligent SDN to enhance security in IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1