{"title":"Neural network relief: a pruning algorithm based on neural activity","authors":"","doi":"10.1007/s10994-024-06516-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Current deep neural networks (DNNs) are overparameterized and use most of their neuronal connections during inference for each task. The human brain, however, developed specialized regions for different tasks and performs inference with a small fraction of its neuronal connections. We propose an iterative pruning strategy introducing a simple importance-score metric that deactivates unimportant connections, tackling overparameterization in DNNs and modulating the firing patterns. The aim is to find the smallest number of connections that is still capable of solving a given task with comparable accuracy, i.e. a simpler subnetwork. We achieve comparable performance for LeNet architectures on MNIST, and significantly higher parameter compression than state-of-the-art algorithms for VGG and ResNet architectures on CIFAR-10/100 and Tiny-ImageNet. Our approach also performs well for the two different optimizers considered—Adam and SGD. The algorithm is not designed to minimize FLOPs when considering current hardware and software implementations, although it performs reasonably when compared to the state of the art.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06516-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Current deep neural networks (DNNs) are overparameterized and use most of their neuronal connections during inference for each task. The human brain, however, developed specialized regions for different tasks and performs inference with a small fraction of its neuronal connections. We propose an iterative pruning strategy introducing a simple importance-score metric that deactivates unimportant connections, tackling overparameterization in DNNs and modulating the firing patterns. The aim is to find the smallest number of connections that is still capable of solving a given task with comparable accuracy, i.e. a simpler subnetwork. We achieve comparable performance for LeNet architectures on MNIST, and significantly higher parameter compression than state-of-the-art algorithms for VGG and ResNet architectures on CIFAR-10/100 and Tiny-ImageNet. Our approach also performs well for the two different optimizers considered—Adam and SGD. The algorithm is not designed to minimize FLOPs when considering current hardware and software implementations, although it performs reasonably when compared to the state of the art.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.