{"title":"Enhanced Video Super-Resolution Network Towards Compressed Data","authors":"Feng Li, Yixuan Wu, Anqi Li, Huihui Bai, Runmin Cong, Yao Zhao","doi":"10.1145/3651309","DOIUrl":null,"url":null,"abstract":"<p>Video super-resolution (VSR) algorithms aim at recovering a temporally consistent high-resolution (HR) video from its corresponding low-resolution (LR) video sequence. Due to the limited bandwidth during video transmission, most available videos on the internet are compressed. Nevertheless, few existing algorithms consider the compression factor in practical applications. In this paper, we propose an enhanced VSR model towards compressed videos, termed as ECVSR, to simultaneously achieve compression artifacts reduction and SR reconstruction end-to-end. ECVSR contains a motion-excited temporal adaption network (METAN) and a multi-frame SR network (SRNet). The METAN takes decoded LR video frames as input and models inter-frame correlations via bidirectional deformable alignment and motion-excited temporal adaption, where temporal differences are calculated as motion prior to excite the motion-sensitive regions of temporal features. In SRNet, cascaded recurrent multi-scale blocks (RMSB) are employed to learn deep spatio-temporal representations from adapted multi-frame features. Then, we build a reconstruction module for spatio-temporal information integration and HR frame reconstruction, which is followed by a detail refinement module for texture and visual quality enhancement. Extensive experimental results on compressed videos demonstrate the superiority of our method for compressed VSR. Code will be available at https://github.com/lifengcs/ECVSR.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"75 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651309","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Video super-resolution (VSR) algorithms aim at recovering a temporally consistent high-resolution (HR) video from its corresponding low-resolution (LR) video sequence. Due to the limited bandwidth during video transmission, most available videos on the internet are compressed. Nevertheless, few existing algorithms consider the compression factor in practical applications. In this paper, we propose an enhanced VSR model towards compressed videos, termed as ECVSR, to simultaneously achieve compression artifacts reduction and SR reconstruction end-to-end. ECVSR contains a motion-excited temporal adaption network (METAN) and a multi-frame SR network (SRNet). The METAN takes decoded LR video frames as input and models inter-frame correlations via bidirectional deformable alignment and motion-excited temporal adaption, where temporal differences are calculated as motion prior to excite the motion-sensitive regions of temporal features. In SRNet, cascaded recurrent multi-scale blocks (RMSB) are employed to learn deep spatio-temporal representations from adapted multi-frame features. Then, we build a reconstruction module for spatio-temporal information integration and HR frame reconstruction, which is followed by a detail refinement module for texture and visual quality enhancement. Extensive experimental results on compressed videos demonstrate the superiority of our method for compressed VSR. Code will be available at https://github.com/lifengcs/ECVSR.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.