Research on the deformation and damage process of crushed-rock highway embankment in permafrost areas

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Particle Mechanics Pub Date : 2024-03-06 DOI:10.1007/s40571-024-00728-9
Runmin Zhao, Shuangjie Wang, Xiaoming Huang, Tao Ma, Jianbing Chen, Haoyuan Luo
{"title":"Research on the deformation and damage process of crushed-rock highway embankment in permafrost areas","authors":"Runmin Zhao, Shuangjie Wang, Xiaoming Huang, Tao Ma, Jianbing Chen, Haoyuan Luo","doi":"10.1007/s40571-024-00728-9","DOIUrl":null,"url":null,"abstract":"<p>Since most of the current researches on the crushed-rock interlayer for highway embankment in permafrost region are based on thermal properties, there are few studies on their mechanical deformation characteristics. In order to study the deformation and failure process of crushed-rock interlayer under the long-term settlement deformation of permafrost foundation and to fully consider the discrete characteristics of the crushed-rock interlayer, the finite element model and discrete element model were coupled in this study to accomplish the numerical calculation of long-term settlement deformation of crushed-rock interlayer highway embankment as well as permafrost foundation. The results show that as for the granite blocks adopted in the Gonghe–Yushu expressway, the blocks in the interlayer would be rarely broken, and the deformation of crushed-rock interlayer is mainly caused by the relative movement and rearrangement of the blocks. Based on the calculation results, it is suggested to adopt the uncompacted randomly piled crushed-rock interlayer, which is composed of crushed blocks with more sharp corners. When the size of block varies from 20 to 40 cm, the block size has no obvious effect on the deformation of crushed-rock interlayer, and therefore, the block size could be determined only by the cooling effect of crushed-rock interlayer. At the meantime, the structure layer above the crushed-rock interlayer should also be rigid enough to ensure a smaller uneven settlement value for the superstructure.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00728-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Since most of the current researches on the crushed-rock interlayer for highway embankment in permafrost region are based on thermal properties, there are few studies on their mechanical deformation characteristics. In order to study the deformation and failure process of crushed-rock interlayer under the long-term settlement deformation of permafrost foundation and to fully consider the discrete characteristics of the crushed-rock interlayer, the finite element model and discrete element model were coupled in this study to accomplish the numerical calculation of long-term settlement deformation of crushed-rock interlayer highway embankment as well as permafrost foundation. The results show that as for the granite blocks adopted in the Gonghe–Yushu expressway, the blocks in the interlayer would be rarely broken, and the deformation of crushed-rock interlayer is mainly caused by the relative movement and rearrangement of the blocks. Based on the calculation results, it is suggested to adopt the uncompacted randomly piled crushed-rock interlayer, which is composed of crushed blocks with more sharp corners. When the size of block varies from 20 to 40 cm, the block size has no obvious effect on the deformation of crushed-rock interlayer, and therefore, the block size could be determined only by the cooling effect of crushed-rock interlayer. At the meantime, the structure layer above the crushed-rock interlayer should also be rigid enough to ensure a smaller uneven settlement value for the superstructure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冻土地区碎石公路路堤变形与破坏过程研究
由于目前对冻土地区公路路堤用碎石夹层的研究大多基于热工特性,对其力学变形特性的研究较少。为了研究碎石夹层在冻土地基长期沉降变形作用下的变形和破坏过程,并充分考虑碎石夹层的离散特性,本研究将有限元模型和离散元模型耦合,完成了碎石夹层公路路堤以及冻土地基长期沉降变形的数值计算。结果表明,对于共和至玉树高速公路采用的花岗岩砌块,夹层中的砌块很少发生破碎,碎石夹层的变形主要由砌块的相对运动和重新排列引起。根据计算结果,建议采用无压实随机堆积碎石夹层,该夹层由尖角较多的碎石块组成。当砌块尺寸在 20 至 40 cm 之间时,砌块尺寸对碎石夹层变形的影响不明显,因此只能根据碎石夹层的冷却效果来确定砌块尺寸。同时,碎石夹层上方的结构层也应具有足够的刚度,以确保上部结构的不均匀沉降值较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
期刊最新文献
Two-scale concurrent simulations for crack propagation using FEM–DEM bridging coupling In silico design-space analysis of a novel tablet coating process using advanced modeling Accurate prediction of generalized oil–water interface evolution with a novel multiphase SPH scheme The virtual stress boundary method to impose nonconforming Neumann boundary conditions in the material point method Effect of particle diameter and void fraction on gas–solid two-phase flow: a numerical investigation using the Eulerian–Eulerian approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1