{"title":"Quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces","authors":"Kingshook Biswas","doi":"10.1007/s10711-024-00903-5","DOIUrl":null,"url":null,"abstract":"<p>Hyperbolic fillings of metric spaces are a well-known tool for proving results on extending quasi-Moebius maps between boundaries of Gromov hyperbolic spaces to quasi-isometries between the spaces. For a hyperbolic filling <i>Y</i> of the boundary of a Gromov hyperbolic space <i>X</i>, one has a quasi-Moebius identification between the boundaries <span>\\(\\partial Y\\)</span> and <span>\\(\\partial X\\)</span>. For CAT(-1) spaces, and more generally boundary continuous Gromov hyperbolic spaces, one can refine the quasi-Moebius structure on the boundary to a Moebius structure. It is then natural to ask whether there exists a functorial hyperbolic filling of the boundary by a boundary continuous Gromov hyperbolic space with an identification between boundaries which is not just quasi-Moebius, but in fact Moebius. The filling should be functorial in the sense that a Moebius homeomorphism between boundaries should induce an isometry between there fillings. We give a positive answer to this question for a large class of boundaries satisfying one crucial hypothesis, the <i>antipodal property</i>. This gives a class of compact spaces called <i>quasi-metric antipodal spaces</i>. For any such space <i>Z</i>, we give a functorial construction of a boundary continuous Gromov hyperbolic space <span>\\(\\mathcal {M}(Z)\\)</span> together with a Moebius identification of its boundary with <i>Z</i>. The space <span>\\(\\mathcal {M}(Z)\\)</span> is maximal amongst all fillings of <i>Z</i>. These spaces <span>\\(\\mathcal {M}(Z)\\)</span> give in fact all examples of a natural class of spaces called <i>maximal Gromov hyperbolic spaces</i>. We prove an equivalence of categories between quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces. This is part of a more general equivalence we prove between the larger categories of certain spaces called <i>antipodal spaces</i> and <i>maximal Gromov product spaces</i>. We prove that the injective hull of a Gromov product space <i>X</i> is isometric to the maximal Gromov product space <span>\\(\\mathcal {M}(Z)\\)</span>, where <i>Z</i> is the boundary of <i>X</i>. We also show that a Gromov product space is injective if and only if it is maximal.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"33 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00903-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperbolic fillings of metric spaces are a well-known tool for proving results on extending quasi-Moebius maps between boundaries of Gromov hyperbolic spaces to quasi-isometries between the spaces. For a hyperbolic filling Y of the boundary of a Gromov hyperbolic space X, one has a quasi-Moebius identification between the boundaries \(\partial Y\) and \(\partial X\). For CAT(-1) spaces, and more generally boundary continuous Gromov hyperbolic spaces, one can refine the quasi-Moebius structure on the boundary to a Moebius structure. It is then natural to ask whether there exists a functorial hyperbolic filling of the boundary by a boundary continuous Gromov hyperbolic space with an identification between boundaries which is not just quasi-Moebius, but in fact Moebius. The filling should be functorial in the sense that a Moebius homeomorphism between boundaries should induce an isometry between there fillings. We give a positive answer to this question for a large class of boundaries satisfying one crucial hypothesis, the antipodal property. This gives a class of compact spaces called quasi-metric antipodal spaces. For any such space Z, we give a functorial construction of a boundary continuous Gromov hyperbolic space \(\mathcal {M}(Z)\) together with a Moebius identification of its boundary with Z. The space \(\mathcal {M}(Z)\) is maximal amongst all fillings of Z. These spaces \(\mathcal {M}(Z)\) give in fact all examples of a natural class of spaces called maximal Gromov hyperbolic spaces. We prove an equivalence of categories between quasi-metric antipodal spaces and maximal Gromov hyperbolic spaces. This is part of a more general equivalence we prove between the larger categories of certain spaces called antipodal spaces and maximal Gromov product spaces. We prove that the injective hull of a Gromov product space X is isometric to the maximal Gromov product space \(\mathcal {M}(Z)\), where Z is the boundary of X. We also show that a Gromov product space is injective if and only if it is maximal.
期刊介绍:
Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems.
Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include:
A fast turn-around time for articles.
Special issues centered on specific topics.
All submitted papers should include some explanation of the context of the main results.
Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.