Sarwan Ali, Muhammad Ahmad, Maham Anwer Beg, Imdad Ullah Khan, Safiullah Faizullah, Muhammad Asad Khan
{"title":"SsAG: Summarization and Sparsification of Attributed Graphs","authors":"Sarwan Ali, Muhammad Ahmad, Maham Anwer Beg, Imdad Ullah Khan, Safiullah Faizullah, Muhammad Asad Khan","doi":"10.1145/3651619","DOIUrl":null,"url":null,"abstract":"<p>Graph summarization has become integral for managing and analyzing large-scale graphs in diverse real-world applications, including social networks, biological networks, and communication networks. Existing methods for graph summarization often face challenges, being either computationally expensive, limiting their applicability to large graphs, or lacking the incorporation of node attributes. In response, we introduce <span>SsAG</span>, an efficient and scalable lossy graph summarization method designed to preserve the essential structure of the original graph. <span>SsAG</span> computes a sparse representation (summary) of the input graph, accommodating graphs with node attributes. The summary is structured as a graph on supernodes (subsets of vertices of <i>G</i>), where weighted superedges connect pairs of supernodes. The methodology focuses on constructing a summary graph with <i>k</i> supernodes, aiming to minimize the reconstruction error (the difference between the original graph and the graph reconstructed from the summary) while maximizing homogeneity with respect to the node attributes. The construction process involves iteratively merging pairs of nodes. To enhance computational efficiency, we derive a closed-form expression for efficiently computing the reconstruction error (RE) after merging a pair, enabling constant-time approximation of this score. We assign a weight to each supernode, quantifying their contribution to the score of pairs, and utilize a weighted sampling strategy to select the best pair for merging. Notably, a logarithmic-sized sample achieves a summary comparable in quality based on various measures. Additionally, we propose a sparsification step for the constructed summary, aiming to reduce storage costs to a specified target size with a marginal increase in RE. Empirical evaluations across diverse real-world graphs demonstrate that <span>SsAG</span> exhibits superior speed, being up to 17 × faster, while generating summaries of comparable quality. This work represents a significant advancement in the field, addressing computational challenges and showcasing the effectiveness of <span>SsAG</span> in graph summarization.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"104 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651619","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Graph summarization has become integral for managing and analyzing large-scale graphs in diverse real-world applications, including social networks, biological networks, and communication networks. Existing methods for graph summarization often face challenges, being either computationally expensive, limiting their applicability to large graphs, or lacking the incorporation of node attributes. In response, we introduce SsAG, an efficient and scalable lossy graph summarization method designed to preserve the essential structure of the original graph. SsAG computes a sparse representation (summary) of the input graph, accommodating graphs with node attributes. The summary is structured as a graph on supernodes (subsets of vertices of G), where weighted superedges connect pairs of supernodes. The methodology focuses on constructing a summary graph with k supernodes, aiming to minimize the reconstruction error (the difference between the original graph and the graph reconstructed from the summary) while maximizing homogeneity with respect to the node attributes. The construction process involves iteratively merging pairs of nodes. To enhance computational efficiency, we derive a closed-form expression for efficiently computing the reconstruction error (RE) after merging a pair, enabling constant-time approximation of this score. We assign a weight to each supernode, quantifying their contribution to the score of pairs, and utilize a weighted sampling strategy to select the best pair for merging. Notably, a logarithmic-sized sample achieves a summary comparable in quality based on various measures. Additionally, we propose a sparsification step for the constructed summary, aiming to reduce storage costs to a specified target size with a marginal increase in RE. Empirical evaluations across diverse real-world graphs demonstrate that SsAG exhibits superior speed, being up to 17 × faster, while generating summaries of comparable quality. This work represents a significant advancement in the field, addressing computational challenges and showcasing the effectiveness of SsAG in graph summarization.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.