Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset Options

Christian Bayer, Chiheb Ben Hammouda, Antonis Papapantoleon, Michael Samet, Raúl Tempone
{"title":"Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset Options","authors":"Christian Bayer, Chiheb Ben Hammouda, Antonis Papapantoleon, Michael Samet, Raúl Tempone","doi":"arxiv-2403.02832","DOIUrl":null,"url":null,"abstract":"Efficiently pricing multi-asset options poses a significant challenge in\nquantitative finance. The Monte Carlo (MC) method remains the prevalent choice\nfor pricing engines; however, its slow convergence rate impedes its practical\napplication. Fourier methods leverage the knowledge of the characteristic\nfunction to accurately and rapidly value options with up to two assets.\nNevertheless, they face hurdles in the high-dimensional settings due to the\ntensor product (TP) structure of commonly employed quadrature techniques. This\nwork advocates using the randomized quasi-MC (RQMC) quadrature to improve the\nscalability of Fourier methods with high dimensions. The RQMC technique\nbenefits from the smoothness of the integrand and alleviates the curse of\ndimensionality while providing practical error estimates. Nonetheless, the\napplicability of RQMC on the unbounded domain, $\\mathbb{R}^d$, requires a\ndomain transformation to $[0,1]^d$, which may result in singularities of the\ntransformed integrand at the corners of the hypercube, and deteriorate the rate\nof convergence of RQMC. To circumvent this difficulty, we design an efficient\ndomain transformation procedure based on the derived boundary growth conditions\nof the integrand. This transformation preserves the sufficient regularity of\nthe integrand and hence improves the rate of convergence of RQMC. To validate\nthis analysis, we demonstrate the efficiency of employing RQMC with an\nappropriate transformation to evaluate options in the Fourier space for various\npricing models, payoffs, and dimensions. Finally, we highlight the\ncomputational advantage of applying RQMC over MC or TP in the Fourier domain,\nand over MC in the physical domain for options with up to 15 assets.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.02832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently pricing multi-asset options poses a significant challenge in quantitative finance. The Monte Carlo (MC) method remains the prevalent choice for pricing engines; however, its slow convergence rate impedes its practical application. Fourier methods leverage the knowledge of the characteristic function to accurately and rapidly value options with up to two assets. Nevertheless, they face hurdles in the high-dimensional settings due to the tensor product (TP) structure of commonly employed quadrature techniques. This work advocates using the randomized quasi-MC (RQMC) quadrature to improve the scalability of Fourier methods with high dimensions. The RQMC technique benefits from the smoothness of the integrand and alleviates the curse of dimensionality while providing practical error estimates. Nonetheless, the applicability of RQMC on the unbounded domain, $\mathbb{R}^d$, requires a domain transformation to $[0,1]^d$, which may result in singularities of the transformed integrand at the corners of the hypercube, and deteriorate the rate of convergence of RQMC. To circumvent this difficulty, we design an efficient domain transformation procedure based on the derived boundary growth conditions of the integrand. This transformation preserves the sufficient regularity of the integrand and hence improves the rate of convergence of RQMC. To validate this analysis, we demonstrate the efficiency of employing RQMC with an appropriate transformation to evaluate options in the Fourier space for various pricing models, payoffs, and dimensions. Finally, we highlight the computational advantage of applying RQMC over MC or TP in the Fourier domain, and over MC in the physical domain for options with up to 15 assets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多资产期权高效傅立叶定价的准蒙特卡洛方法
高效地为多资产期权定价是定量金融学面临的一项重大挑战。蒙特卡罗(Monte Carlo,MC)方法仍然是定价引擎的主流选择;然而,其缓慢的收敛速度阻碍了它的实际应用。傅立叶方法利用特征函数的知识对最多两种资产的期权进行准确而快速的估值。然而,由于常用正交技术的张量乘积(TP)结构,它们在高维设置中面临障碍。本研究提倡使用随机准 MC(RQMC)正交技术来提高高维傅立叶方法的可扩展性。RQMC 技术得益于积分的平滑性,缓解了维数诅咒,同时提供了实用的误差估计。然而,RQMC 在无界域($\mathbb{R}^d$)上的应用需要将域变换为 $[0,1]^d$,这可能会导致变换后的积分在超立方体的角上出现奇点,从而降低 RQMC 的收敛速度。为了规避这一难题,我们根据推导出的积分的边界增长条件,设计了一种高效的域变换程序。这种变换保留了积分的充分正则性,从而提高了 RQMC 的收敛速度。为了验证这一分析,我们演示了在傅里叶空间对不同定价模型、报酬和维度的期权进行评估时,采用 RQMC 并进行适当变换的效率。最后,我们强调了在傅里叶域应用 RQMC 相对于 MC 或 TP 的计算优势,以及在物理域应用 MC 相对于多达 15 种资产的期权的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1