Nonlinear vibrations analysis of two-directional functionally graded porous cylindrical shells resting on elastic substrates in a thermal environment based on Donnell nonlinear shell theory
Ahmad Ali Rahmani, Farhad Hosseinnejad, Yasser Rostamiyan
{"title":"Nonlinear vibrations analysis of two-directional functionally graded porous cylindrical shells resting on elastic substrates in a thermal environment based on Donnell nonlinear shell theory","authors":"Ahmad Ali Rahmani, Farhad Hosseinnejad, Yasser Rostamiyan","doi":"10.1177/09544100241234376","DOIUrl":null,"url":null,"abstract":"The primary objective of this study is to investigate the nonlinear free vibrational characteristics of temperature-dependent two-directional functionally graded porous (TDFGP) cylindrical shells resting on elastic substrates in a thermal environment. To accomplish this, the thermomechanical equations are derived based on the Donnell nonlinear shell theory framework in conjunction with the von Kármán assumption. Two-directional functionally graded porous cylindrical shell models have mechanical properties that can change smoothly and continuously across the length and thickness of the shell. Additionally, it is assumed that the internal porosities in the matrix materials can be dispersed into two independent patterns, either even or uneven porosity distribution. The nonlinearity in free vibration assessed via the nonlinear-to-linear frequency ratio concerning the central deflection amplitude can be gained employing the Galerkin discretization approach and modified Poincare–Lindstedt (P-L) method. The accuracy and effectiveness of the present analytical model are indicated through comparison with existing solutions. Finally, some comprehensive parametric investigations are carried out to gain insight into the impacts of several factors on the nonlinear free vibration characteristics of structures under different conditions. The results of this article demonstrate that parameters such as gradient indices, volume fraction, distribution pattern of porosity, geometric parameters, and ambient temperature rise significantly influence the structure’s nonlinear frequency and free vibration response.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241234376","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The primary objective of this study is to investigate the nonlinear free vibrational characteristics of temperature-dependent two-directional functionally graded porous (TDFGP) cylindrical shells resting on elastic substrates in a thermal environment. To accomplish this, the thermomechanical equations are derived based on the Donnell nonlinear shell theory framework in conjunction with the von Kármán assumption. Two-directional functionally graded porous cylindrical shell models have mechanical properties that can change smoothly and continuously across the length and thickness of the shell. Additionally, it is assumed that the internal porosities in the matrix materials can be dispersed into two independent patterns, either even or uneven porosity distribution. The nonlinearity in free vibration assessed via the nonlinear-to-linear frequency ratio concerning the central deflection amplitude can be gained employing the Galerkin discretization approach and modified Poincare–Lindstedt (P-L) method. The accuracy and effectiveness of the present analytical model are indicated through comparison with existing solutions. Finally, some comprehensive parametric investigations are carried out to gain insight into the impacts of several factors on the nonlinear free vibration characteristics of structures under different conditions. The results of this article demonstrate that parameters such as gradient indices, volume fraction, distribution pattern of porosity, geometric parameters, and ambient temperature rise significantly influence the structure’s nonlinear frequency and free vibration response.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).