{"title":"Pattern Bifurcation in a Nonlocal Erosion Equation","authors":"D. A. Kulikov","doi":"10.1134/S000511792311005X","DOIUrl":null,"url":null,"abstract":"<p>This paper considers a periodic boundary value problem for a nonlinear partial differential equation with a deviating spatial variable. It is called the nonlocal erosion equation and was proposed as a model for the formation of dynamic patterns on the semiconductor surface. As is demonstrated below, the formation of a spatially inhomogeneous relief is a self-organization process. An inhomogeneous relief appears due to local bifurcations in the neighborhood of homogeneous equilibria when they change their stability. The analysis of this problem is based on modern methods of the theory of infinite-dimensional dynamic systems, including such branches as the theory of invariant manifolds, the apparatus of normal forms, and asymptotic methods for studying dynamic systems.</p>","PeriodicalId":55411,"journal":{"name":"Automation and Remote Control","volume":"84 11","pages":"1161 - 1174"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Remote Control","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1134/S000511792311005X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers a periodic boundary value problem for a nonlinear partial differential equation with a deviating spatial variable. It is called the nonlocal erosion equation and was proposed as a model for the formation of dynamic patterns on the semiconductor surface. As is demonstrated below, the formation of a spatially inhomogeneous relief is a self-organization process. An inhomogeneous relief appears due to local bifurcations in the neighborhood of homogeneous equilibria when they change their stability. The analysis of this problem is based on modern methods of the theory of infinite-dimensional dynamic systems, including such branches as the theory of invariant manifolds, the apparatus of normal forms, and asymptotic methods for studying dynamic systems.
期刊介绍:
Automation and Remote Control is one of the first journals on control theory. The scope of the journal is control theory problems and applications. The journal publishes reviews, original articles, and short communications (deterministic, stochastic, adaptive, and robust formulations) and its applications (computer control, components and instruments, process control, social and economy control, etc.).