{"title":"Electromechanical behavior of a rectangular bulk superconductor with an inhomogeneous critical current density under pulsed-field magnetization","authors":"Yu Yang , Lingyun Jian","doi":"10.1016/j.physc.2024.1354483","DOIUrl":null,"url":null,"abstract":"<div><p>Bulk high-temperature superconductors are widely used in various superconducting devices for their high critical current density and the ability to trap large magnetic field. In some applications, bulk superconductors can be arranged in an array structure to increase the magnetic field strength. However, rectangular bulk superconductors can be arranged more compactly than commonly used cylindrical bulk superconductors. The unique shape of rectangular bulk superconductors results in different distributions of electromagnetic fields, temperature, and stress under a pulsed-field magnetization (PFM) than for cylindrical bulk superconductors. In bulk superconductors, growth sector boundaries and growth sector regions have different critical current density, resulting in an uneven critical current density. Therefore, in this study, the electromagnetic and mechanical behavior of non-uniform rectangular bulk superconductors during the PFM process is investigated. The corresponding distribution and variation in the magnetic field, current, temperature, and stress in the bulk are calculated and analyzed. The influence of rectangle aspect ratio on the electromagnetic and mechanical behavior is discussed. The calculation results show that the magnetic flux jumps occur accompanied by sudden changes in the temperature and pressure. The effect of the aspect ratio of rectangular bulk superconductors on their electromagnetic and mechanical properties is analyzed. The influence of preexisting cracks in a non-uniform rectangular bulk superconductor on the simulation results is discussed. The numerical results indicate that the presence of an edge crack exacerbates the magnetic flux jump as well as the jumps in the temperature and stress. However, a central crack has a relatively small effect on the stability of a bulk superconductor.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"619 ","pages":"Article 1354483"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453424000480","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Bulk high-temperature superconductors are widely used in various superconducting devices for their high critical current density and the ability to trap large magnetic field. In some applications, bulk superconductors can be arranged in an array structure to increase the magnetic field strength. However, rectangular bulk superconductors can be arranged more compactly than commonly used cylindrical bulk superconductors. The unique shape of rectangular bulk superconductors results in different distributions of electromagnetic fields, temperature, and stress under a pulsed-field magnetization (PFM) than for cylindrical bulk superconductors. In bulk superconductors, growth sector boundaries and growth sector regions have different critical current density, resulting in an uneven critical current density. Therefore, in this study, the electromagnetic and mechanical behavior of non-uniform rectangular bulk superconductors during the PFM process is investigated. The corresponding distribution and variation in the magnetic field, current, temperature, and stress in the bulk are calculated and analyzed. The influence of rectangle aspect ratio on the electromagnetic and mechanical behavior is discussed. The calculation results show that the magnetic flux jumps occur accompanied by sudden changes in the temperature and pressure. The effect of the aspect ratio of rectangular bulk superconductors on their electromagnetic and mechanical properties is analyzed. The influence of preexisting cracks in a non-uniform rectangular bulk superconductor on the simulation results is discussed. The numerical results indicate that the presence of an edge crack exacerbates the magnetic flux jump as well as the jumps in the temperature and stress. However, a central crack has a relatively small effect on the stability of a bulk superconductor.
期刊介绍:
Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity.
The main goal of the journal is to publish:
1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods.
2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance.
3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices.
The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.