{"title":"Adiabatic elimination in the presence of multiphoton transitions in atoms inside a cavity","authors":"Prosenjit Maity","doi":"10.1142/s0217979224504393","DOIUrl":null,"url":null,"abstract":"<p>Various approaches have been used in the literature for eliminating nonresonant levels in atomic systems and deriving effective Hamiltonians. Important among these are elimination techniques at the level of probability amplitudes, operator techniques to project the dynamics on to the subspace of resonant levels, Green’s function techniques, the James’ effective Hamiltonian approach, etc. None of the previous approaches is suitable for deriving effective Hamiltonians in intracavity situations. However, the James’ approach does work in the case of only two-photon transitions in a cavity. A generalization of the James’ approach works in the case of three-photon transitions in a cavity, but only under Raman-like resonant conditions. Another important approach for adiabatic elimination is based on an adaptation of the Markov approximation well-known in the theory of system–bath interactions. However, this approach has not been shown to work in intracavity situations. In this paper, we present a method of adiabatic elimination for atoms inside cavities in the presence of multiphoton transitions. We work in the Heisenberg picture, and our approach has the advantage that it allows one to derive effective Hamiltonians even when Raman-like resonance conditions do not hold.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"30 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979224504393","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Various approaches have been used in the literature for eliminating nonresonant levels in atomic systems and deriving effective Hamiltonians. Important among these are elimination techniques at the level of probability amplitudes, operator techniques to project the dynamics on to the subspace of resonant levels, Green’s function techniques, the James’ effective Hamiltonian approach, etc. None of the previous approaches is suitable for deriving effective Hamiltonians in intracavity situations. However, the James’ approach does work in the case of only two-photon transitions in a cavity. A generalization of the James’ approach works in the case of three-photon transitions in a cavity, but only under Raman-like resonant conditions. Another important approach for adiabatic elimination is based on an adaptation of the Markov approximation well-known in the theory of system–bath interactions. However, this approach has not been shown to work in intracavity situations. In this paper, we present a method of adiabatic elimination for atoms inside cavities in the presence of multiphoton transitions. We work in the Heisenberg picture, and our approach has the advantage that it allows one to derive effective Hamiltonians even when Raman-like resonance conditions do not hold.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.