Natural convective and Cattaneo–Christov model for couple stress nanofluid at the middle of the squeezed channel with sensor surface

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED International Journal of Modern Physics B Pub Date : 2024-02-29 DOI:10.1142/s0217979224504435
T. Salahuddin, Muhammad Awais
{"title":"Natural convective and Cattaneo–Christov model for couple stress nanofluid at the middle of the squeezed channel with sensor surface","authors":"T. Salahuddin, Muhammad Awais","doi":"10.1142/s0217979224504435","DOIUrl":null,"url":null,"abstract":"<p>The aim of this work is to present a natural convective and squeezing flow model of two-dimensional couple stress nanofluid which is flowing on the sensory surface with variable fluid viscosity. The fluid flowing on a microcantilever sensory surface and squeezing is happening at free stream. The sensor is also useful to detect the movement of fluid and the variations in thermal and solutal rates. The Cattaneo–Christov model is adopted along with nanoparticle and chemical reaction to explore the transmission of heat and mass rates. The analysis of heat transmission in non-Newtonian couple stress fluid flowing on squeezed sensory surface by using the Cattaneo–Christov heat conduction model has various industrial and scientific applications including the polymer processing, wastewater treatment, chemical reactors, biomedical flows, cooling and heating processes in industries, heat exchangers, microfluidics, oil and gas industries. All the assumptions are applied in the basic governing laws laws and then we get the model of the partial differential equations. The governing model of equations is transmuted into ordinary differential equations form via the transformations and then the numerical results of these ODE’s are examined with a well-defined numerical technique “Shooting Method”. For higher inputs of couple stress, squeezing index and permeability velocity, the fluid’s internal velocity decreases. Because of the Prandtl number and thermal relaxation coefficient, the heat transfer mechanism slows down. Mass transfer increases for greater inputs of the thermal diffusivity coefficient and decreases due to concentration relaxation. Further, the numerical dependency of emerging parameters on the skin friction is illustrated in tabular form. The parametric effects on the model (velocity, temperature and concentration) are introduced using numerical values shown in the table.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"30 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979224504435","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this work is to present a natural convective and squeezing flow model of two-dimensional couple stress nanofluid which is flowing on the sensory surface with variable fluid viscosity. The fluid flowing on a microcantilever sensory surface and squeezing is happening at free stream. The sensor is also useful to detect the movement of fluid and the variations in thermal and solutal rates. The Cattaneo–Christov model is adopted along with nanoparticle and chemical reaction to explore the transmission of heat and mass rates. The analysis of heat transmission in non-Newtonian couple stress fluid flowing on squeezed sensory surface by using the Cattaneo–Christov heat conduction model has various industrial and scientific applications including the polymer processing, wastewater treatment, chemical reactors, biomedical flows, cooling and heating processes in industries, heat exchangers, microfluidics, oil and gas industries. All the assumptions are applied in the basic governing laws laws and then we get the model of the partial differential equations. The governing model of equations is transmuted into ordinary differential equations form via the transformations and then the numerical results of these ODE’s are examined with a well-defined numerical technique “Shooting Method”. For higher inputs of couple stress, squeezing index and permeability velocity, the fluid’s internal velocity decreases. Because of the Prandtl number and thermal relaxation coefficient, the heat transfer mechanism slows down. Mass transfer increases for greater inputs of the thermal diffusivity coefficient and decreases due to concentration relaxation. Further, the numerical dependency of emerging parameters on the skin friction is illustrated in tabular form. The parametric effects on the model (velocity, temperature and concentration) are introduced using numerical values shown in the table.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带传感器表面的挤压通道中间耦合应力纳米流体的自然对流和卡塔尼奥-克里斯托夫模型
这项研究的目的是提出一种二维耦合应力纳米流体的自然对流和挤压流模型,该流体在具有可变流体粘度的传感表面上流动。流体在微悬臂传感表面上流动,并在自由流下发生挤压。该传感器还可用于检测流体的运动以及热和溶解速率的变化。采用 Cattaneo-Christov 模型以及纳米粒子和化学反应来探索热量和质量速率的传输。利用 Cattaneo-Christov 热传导模型分析非牛顿耦合应力流体在挤压感官表面流动时的热传导,在工业和科学领域有多种应用,包括聚合物加工、废水处理、化学反应器、生物医学流、工业冷却和加热过程、热交换器、微流体技术、石油和天然气工业等。所有假设都适用于基本的支配定律,然后我们就得到了偏微分方程模型。通过变换,将控制方程模型转换为常微分方程形式,然后使用定义明确的数值技术 "射击法 "对这些常微分方程的数值结果进行检验。输入的耦合应力、挤压指数和渗透速度越大,流体的内部速度越小。由于普朗特数和热松弛系数的影响,传热机制减慢。热扩散系数越大,传质越多,而浓度松弛会导致传质减少。此外,还以表格形式说明了新出现的参数对表皮摩擦力的数值依赖性。表中的数值显示了参数对模型(速度、温度和浓度)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
期刊最新文献
Möbius group actions in the solvable chimera model On the solutions of space-time fractional CBS and CBS-BK equations describing the dynamics of Riemann wave interaction Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis Electro-fluid-dynamics (EFD) of soft-bodied organisms swimming through mucus having dilatant, viscous, and pseudo-plastic properties Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1