Elkin Cruz-Camacho, Siyuan Qian, Ankit Shukla, Neil McGlohon, Shaloo Rakheja, Christopher D. Carothers
{"title":"Performance Evaluation of Spintronic-Based Spiking Neural Networks Using Parallel Discrete-Event Simulation","authors":"Elkin Cruz-Camacho, Siyuan Qian, Ankit Shukla, Neil McGlohon, Shaloo Rakheja, Christopher D. Carothers","doi":"10.1145/3649464","DOIUrl":null,"url":null,"abstract":"<p>Spintronics devices that use the spin of electrons as the information state variable have the potential to emulate neuro-synaptic dynamics and can be realized within a compact form-factor, while operating at ultra-low energy-delay point. In this paper, we benchmark the performance of a spintronics hardware platform designed for handling neuromorphic tasks. </p><p>To explore the benefits of spintronics-based hardware on realistic neuromorphic workloads, we developed a Parallel Discrete-Event Simulation model called Doryta, which is further integrated with a materials-to-systems benchmarking framework. The benchmarking framework allows us to obtain quantitative metrics on the throughput and energy of spintronics-based neuromorphic computing and compare these against standard CMOS-based approaches. Although spintronics hardware offers significant energy and latency advantages, we find that for larger neuromorphic circuits, the performance is limited by the interconnection networks rather than the spintronics-based neurons and synapses. This limitation can be overcome by architectural changes to the network. </p><p>Through Doryta we are also able to show the power of neuromorphic computing by simulating Conway’s Game of Life (GoL), thus showing that it is Turing complete. We show that Doryta obtains over 300 × speedup using 1,024 CPU cores when tested on a convolutional, sparse, neural architecture. When scaled-up 64 times, to a 200 million neuron model, the simulation ran in 3:42 minutes for a total of 2000 virtual clock steps. The conservative approach of execution was found to be faster in most cases than the optimistic approach, even when a tie-breaking mechanism to guarantee deterministic execution, was deactivated.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":"99 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649464","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Spintronics devices that use the spin of electrons as the information state variable have the potential to emulate neuro-synaptic dynamics and can be realized within a compact form-factor, while operating at ultra-low energy-delay point. In this paper, we benchmark the performance of a spintronics hardware platform designed for handling neuromorphic tasks.
To explore the benefits of spintronics-based hardware on realistic neuromorphic workloads, we developed a Parallel Discrete-Event Simulation model called Doryta, which is further integrated with a materials-to-systems benchmarking framework. The benchmarking framework allows us to obtain quantitative metrics on the throughput and energy of spintronics-based neuromorphic computing and compare these against standard CMOS-based approaches. Although spintronics hardware offers significant energy and latency advantages, we find that for larger neuromorphic circuits, the performance is limited by the interconnection networks rather than the spintronics-based neurons and synapses. This limitation can be overcome by architectural changes to the network.
Through Doryta we are also able to show the power of neuromorphic computing by simulating Conway’s Game of Life (GoL), thus showing that it is Turing complete. We show that Doryta obtains over 300 × speedup using 1,024 CPU cores when tested on a convolutional, sparse, neural architecture. When scaled-up 64 times, to a 200 million neuron model, the simulation ran in 3:42 minutes for a total of 2000 virtual clock steps. The conservative approach of execution was found to be faster in most cases than the optimistic approach, even when a tie-breaking mechanism to guarantee deterministic execution, was deactivated.
期刊介绍:
The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods.
The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.