Rapid depletion of target proteins in plants by an inducible protein degradation system.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Cell Pub Date : 2024-09-03 DOI:10.1093/plcell/koae072
Linzhou Huang, Marcela Rojas-Pierce
{"title":"Rapid depletion of target proteins in plants by an inducible protein degradation system.","authors":"Linzhou Huang, Marcela Rojas-Pierce","doi":"10.1093/plcell/koae072","DOIUrl":null,"url":null,"abstract":"<p><p>Inducible protein knockdowns are excellent tools to test the function of essential proteins in short time scales and to capture the role of proteins in dynamic events. Current approaches destroy or sequester proteins by exploiting plant biological mechanisms such as the activity of photoreceptors for optogenetics or auxin-mediated ubiquitination in auxin degrons. It follows that these are not applicable for plants as light and auxin are strong signals for plant cells. We describe here an inducible protein degradation system in plants named E3-DART for E3-targeted Degradation of Plant Proteins. The E3-DART system is based on the specific and well-characterized interaction between the Salmonella-secreted protein H1 (SspH1) and its human target protein kinase N1 (PKN1). This system harnesses the E3 catalytic activity of SspH1 and the SspH1-binding activity of the homology region 1b (HR1b) domain from PKN1. Using Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana), we show that a chimeric protein containing the leucine-rich repeat and novel E3 ligase domains of SspH1 efficiently targets protein fusions of varying sizes containing HR1b for degradation. Target protein degradation was induced by transcriptional control of the chimeric E3 ligase using a glucocorticoid transactivation system, and target protein depletion was detected as early as 3 h after induction. This system could be used to study the loss of any plant protein with high-temporal resolution and may become an important tool in plant cell biology.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae072","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inducible protein knockdowns are excellent tools to test the function of essential proteins in short time scales and to capture the role of proteins in dynamic events. Current approaches destroy or sequester proteins by exploiting plant biological mechanisms such as the activity of photoreceptors for optogenetics or auxin-mediated ubiquitination in auxin degrons. It follows that these are not applicable for plants as light and auxin are strong signals for plant cells. We describe here an inducible protein degradation system in plants named E3-DART for E3-targeted Degradation of Plant Proteins. The E3-DART system is based on the specific and well-characterized interaction between the Salmonella-secreted protein H1 (SspH1) and its human target protein kinase N1 (PKN1). This system harnesses the E3 catalytic activity of SspH1 and the SspH1-binding activity of the homology region 1b (HR1b) domain from PKN1. Using Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana), we show that a chimeric protein containing the leucine-rich repeat and novel E3 ligase domains of SspH1 efficiently targets protein fusions of varying sizes containing HR1b for degradation. Target protein degradation was induced by transcriptional control of the chimeric E3 ligase using a glucocorticoid transactivation system, and target protein depletion was detected as early as 3 h after induction. This system could be used to study the loss of any plant protein with high-temporal resolution and may become an important tool in plant cell biology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过诱导蛋白降解系统快速消耗植物中的目标蛋白。
诱导性蛋白质敲除是在短时间内测试必需蛋白质功能和捕捉蛋白质在动态事件中作用的绝佳工具。目前的方法是利用植物的生物机制(如光遗传学中光感受器的活性或辅助素脱殖子中辅助素介导的泛素化)来破坏或封闭蛋白质。由于光和辅酶对植物细胞来说是强烈的信号,因此这些方法并不适用于植物。我们在此描述一种诱导性植物蛋白降解系统,命名为 E3-DART (E3-targeted Degradation of Plant Proteins)。E3-DART 系统基于沙门氏菌分泌蛋白 H1(SspH1)与其人类靶蛋白激酶 N1(PKN1)之间的特异性和特征性相互作用。该系统利用了 SspH1 的 E3 催化活性和 PKN1 同源区 1b (HR1b) 结构域的 SspH1 结合活性。我们利用拟南芥(Nicotiana benthamiana)和拟南芥(Arabidopsis thaliana)研究表明,含有SspH1的富亮氨酸重复(LRR)结构域和新型E3连接酶(NEL)结构域的嵌合蛋白能有效地靶向含有HR1b的不同大小的融合蛋白进行降解。利用糖皮质激素转录激活系统通过对嵌合 E3 连接酶的转录控制诱导靶蛋白降解,并且在诱导后 3 小时就能检测到靶蛋白耗竭。该系统可用于以高时间分辨率研究任何植物蛋白的损失,并可能成为植物细胞生物学的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
期刊最新文献
Small protein, big effects: ENOD93 alters mitochondrial ATP production to favor nitrogen assimilation in plants. The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis. MAC3A and MAC3B mediate degradation of the transcription factor ERF13 and thus promote lateral root emergence. Rapid depletion of target proteins in plants by an inducible protein degradation system. Proteolytic control of the RNA silencing machinery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1