Exploration of YBX1 role in the prognostic value and immune characteristics by single-cell and bulk sequencing analysis for liver hepatocellular carcinoma
{"title":"Exploration of YBX1 role in the prognostic value and immune characteristics by single-cell and bulk sequencing analysis for liver hepatocellular carcinoma","authors":"Qingqing Zhang, Bingye Zhu, Hongyan Yang, Fei Li, Ying Qu, Lungen Lu, Qidi Zhang","doi":"10.1002/jgm.3680","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Y-box binding protein 1 (YBX1) plays a variety of roles in progression of multiple tumors. However, the role of YBX1 in prognostic value and immune regulation for liver hepatocellular carcinoma (LIHC) remains unclear. The present study aimed to examine the effect of YBX1 on the regulation of tumor immunity and survival prediction in LIHC patients.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>YBX1-related expression profiles and single-cell and bulk sequencing analysis were performed using online databases. YBX1 expression was validated by a quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. Univariate/multivariate Cox regression analysis was performed to determine independent predictors of overall survival (OS). The ESTIMATE (i.e., Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) algorithm and Tumor Immune Dysfunction and Exclusion (TIDE) analysis were used to assess the relationships between YBX1 and LIHC immunity.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>YBX1 was over-expressed in LIHC tissues and cell lines. High YBX1 expression was significantly associated with poor OS. Univariate/multivariate Cox regression analysis revealed that YBX1 was an independent prognostic factor for LIHC. Gene set enrichment analysis revealed that YBX1 was associated with multiple signaling pathways correlated to LIHC. Additionally, YBX1 was expressed in multiple immune cells and was significantly correlated with immune cells, immune checkpoint markers and tumor immune microenvironment. The TIDE analysis demonstrated that LIHC patients with high YBX1 expression showed a higher T-cell dysfunction score and a higher exclusion score, as well as poorer immunotherapy response.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>YBX1 plays crucial oncogenic roles in LIHC and is closely associated with the immune defense system. YBX1 inhibition may serve as a potential treatment for LIHC.</p>\n </section>\n </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.3680","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Y-box binding protein 1 (YBX1) plays a variety of roles in progression of multiple tumors. However, the role of YBX1 in prognostic value and immune regulation for liver hepatocellular carcinoma (LIHC) remains unclear. The present study aimed to examine the effect of YBX1 on the regulation of tumor immunity and survival prediction in LIHC patients.
Methods
YBX1-related expression profiles and single-cell and bulk sequencing analysis were performed using online databases. YBX1 expression was validated by a quantitative real-time PCR (qRT-PCR), western blotting and immunohistochemistry. Univariate/multivariate Cox regression analysis was performed to determine independent predictors of overall survival (OS). The ESTIMATE (i.e., Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) algorithm and Tumor Immune Dysfunction and Exclusion (TIDE) analysis were used to assess the relationships between YBX1 and LIHC immunity.
Results
YBX1 was over-expressed in LIHC tissues and cell lines. High YBX1 expression was significantly associated with poor OS. Univariate/multivariate Cox regression analysis revealed that YBX1 was an independent prognostic factor for LIHC. Gene set enrichment analysis revealed that YBX1 was associated with multiple signaling pathways correlated to LIHC. Additionally, YBX1 was expressed in multiple immune cells and was significantly correlated with immune cells, immune checkpoint markers and tumor immune microenvironment. The TIDE analysis demonstrated that LIHC patients with high YBX1 expression showed a higher T-cell dysfunction score and a higher exclusion score, as well as poorer immunotherapy response.
Conclusions
YBX1 plays crucial oncogenic roles in LIHC and is closely associated with the immune defense system. YBX1 inhibition may serve as a potential treatment for LIHC.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.