An Efficient Local Artificial Boundary Condition for Infinite Long Finite Element Euler–Bernoulli Beam

IF 1.2 4区 工程技术 Q3 ACOUSTICS Shock and Vibration Pub Date : 2024-03-07 DOI:10.1155/2024/8856967
Zijun Zheng, Gang Pang
{"title":"An Efficient Local Artificial Boundary Condition for Infinite Long Finite Element Euler–Bernoulli Beam","authors":"Zijun Zheng, Gang Pang","doi":"10.1155/2024/8856967","DOIUrl":null,"url":null,"abstract":"To solve the wave propagation problems of the Euler–Bernoulli beam in an unbounded domain effectively and efficiently, a new local artificial boundary condition technology is proposed. It replaces the residual right-hand side of the truncated discrete equation with an equivalent linear algebraic system. First, the equivalent Schrodinger equation is discussed. Its artificial boundary condition is obtained by first rationalizing the Dirichlet-to-Neumann condition in the frequency domain with a Pade approximation and then inverse transforming each Pade term back into the time domain by introducing auxiliary degrees of freedom. Frequency shifting is employed such that it performs better near a prescribed frequency. Then, the artificial boundary condition of the finite element Euler–Bernoulli beam is obtained by simple algebraic manipulations on that of the corresponding Schrodinger equation. This method only makes local changes to the original truncated discrete dynamic system and thus is very efficient and easy to use. The accuracy of the proposed method can be improved by using more Pade terms and a proper shift frequency. The numerical example shows, with only a few additional degrees of freedom, the proposed artificial boundary condition effectively eliminates the spurious reflection. The idea of the proposed method can also be used in other dispersive wave systems.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8856967","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the wave propagation problems of the Euler–Bernoulli beam in an unbounded domain effectively and efficiently, a new local artificial boundary condition technology is proposed. It replaces the residual right-hand side of the truncated discrete equation with an equivalent linear algebraic system. First, the equivalent Schrodinger equation is discussed. Its artificial boundary condition is obtained by first rationalizing the Dirichlet-to-Neumann condition in the frequency domain with a Pade approximation and then inverse transforming each Pade term back into the time domain by introducing auxiliary degrees of freedom. Frequency shifting is employed such that it performs better near a prescribed frequency. Then, the artificial boundary condition of the finite element Euler–Bernoulli beam is obtained by simple algebraic manipulations on that of the corresponding Schrodinger equation. This method only makes local changes to the original truncated discrete dynamic system and thus is very efficient and easy to use. The accuracy of the proposed method can be improved by using more Pade terms and a proper shift frequency. The numerical example shows, with only a few additional degrees of freedom, the proposed artificial boundary condition effectively eliminates the spurious reflection. The idea of the proposed method can also be used in other dispersive wave systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无限长有限元欧拉-伯努利梁的高效局部人工边界条件
为了有效和高效地解决欧拉-伯努利梁在无界域中的波传播问题,提出了一种新的局部人工边界条件技术。它用一个等效线性代数系统取代了截断离散方程的残余右边。首先,讨论等效薛定谔方程。其人工边界条件的获得方法是:首先在频域中用帕德近似合理化迪里希勒到诺伊曼条件,然后通过引入辅助自由度将每个帕德项反变换回时域。采用频率偏移,使其在规定频率附近表现更佳。然后,通过对相应的薛定谔方程进行简单的代数处理,获得有限元欧拉-伯努利梁的人工边界条件。这种方法只对原始的截断离散动态系统进行局部改变,因此非常高效且易于使用。通过使用更多的 Pade 项和适当的移频,可以提高所提方法的精度。数值示例表明,只需增加几个自由度,所提出的人工边界条件就能有效消除杂散反射。所提方法的思想也可用于其他色散波系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
期刊最新文献
Control Effect Analysis and Engineering Application of Anchor Cable Beam-Truss Structure on Large-Deformation Roadway in Deep Coal Mine Study on Ultrasonic Characteristics and Prediction of Rock with Different Pore Sizes Deformation and Failure Evolution Law and Support Optimization of Gob-Side Entry in Weakly Cemented Soft Rock under the Influence of Fault Study on Pretightening Loss Effect of Bolt Support in Deep Soft Rock Roadway Examination of Precast Concrete Movement Subjected to Vibration Employing Mass-Spring Model with Two Convective Masses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1