{"title":"Numerical simulations of a hydrogen-air pre-detonator for detonation engines","authors":"Amrutha Preethi Pathangae, Ramanujachari Varadachari","doi":"10.1177/09544100241233324","DOIUrl":null,"url":null,"abstract":"In recent years, heat release associated with the detonation phenomenon is considered a very efficient process. Pressure gain combustors are being developed with detonation waves as the driving force. In this scenario, study of detonation waves has become very important. Deflagration-to-Detonation transition (DDT) is one of the ways used to initiate detonation in the combustors. An attempt has been made in this paper to study the DDT in a tube with obstacles using OPENFOAM. A 2-dimensional rectangular section of a tube containing obstacles filled with stoichiometric hydrogen-air mixtures at different initial conditions have been studied. The effect of changes in the length of the tube, number of obstacles, blockage ratios and initial pressure of the reactants on the detonation wave properties have been studied using numerical simulation based on ddtfoam software. The motivation for this study is to design a pre-detonator for a rotating detonation engine (RDE). In order to make it compatible with the RDE and the test facility, it has been proposed to carry out simulations using shorter lengths of the DDT tube. The number of obstacles has been selected appropriately to obtain detonation at shorter lengths of the tube of the order of 1.5 m, 1.0 m & 0.5 m. As the objective has been to obtain design data for the prototype, the finer details of DDT are not being discussed in this paper.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241233324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, heat release associated with the detonation phenomenon is considered a very efficient process. Pressure gain combustors are being developed with detonation waves as the driving force. In this scenario, study of detonation waves has become very important. Deflagration-to-Detonation transition (DDT) is one of the ways used to initiate detonation in the combustors. An attempt has been made in this paper to study the DDT in a tube with obstacles using OPENFOAM. A 2-dimensional rectangular section of a tube containing obstacles filled with stoichiometric hydrogen-air mixtures at different initial conditions have been studied. The effect of changes in the length of the tube, number of obstacles, blockage ratios and initial pressure of the reactants on the detonation wave properties have been studied using numerical simulation based on ddtfoam software. The motivation for this study is to design a pre-detonator for a rotating detonation engine (RDE). In order to make it compatible with the RDE and the test facility, it has been proposed to carry out simulations using shorter lengths of the DDT tube. The number of obstacles has been selected appropriately to obtain detonation at shorter lengths of the tube of the order of 1.5 m, 1.0 m & 0.5 m. As the objective has been to obtain design data for the prototype, the finer details of DDT are not being discussed in this paper.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).