Using plausible values when fitting multilevel models with large-scale assessment data using R

Q1 Engineering Visualization in Engineering Pub Date : 2024-03-07 DOI:10.1186/s40536-024-00192-0
Francis L. Huang
{"title":"Using plausible values when fitting multilevel models with large-scale assessment data using R","authors":"Francis L. Huang","doi":"10.1186/s40536-024-00192-0","DOIUrl":null,"url":null,"abstract":"The use of large-scale assessments (LSAs) in education has grown in the past decade though analysis of LSAs using multilevel models (MLMs) using R has been limited. A reason for its limited use may be due to the complexity of incorporating both plausible values and weighted analyses in the multilevel analyses of LSA data. We provide additional functions in R that extend the functionality of the WeMix (Bailey et al., 2023) package to allow for the automatic pooling of plausible values. In addition, functions for model comparisons using plausible values and the ability to export output to different formats (e.g., Word, html) are also provided.","PeriodicalId":37417,"journal":{"name":"Visualization in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40536-024-00192-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The use of large-scale assessments (LSAs) in education has grown in the past decade though analysis of LSAs using multilevel models (MLMs) using R has been limited. A reason for its limited use may be due to the complexity of incorporating both plausible values and weighted analyses in the multilevel analyses of LSA data. We provide additional functions in R that extend the functionality of the WeMix (Bailey et al., 2023) package to allow for the automatic pooling of plausible values. In addition, functions for model comparisons using plausible values and the ability to export output to different formats (e.g., Word, html) are also provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 R 对大规模评估数据拟合多层次模型时使用可信值
在过去的十年中,大规模评估(LSA)在教育领域的应用日益增多,但使用 R 语言的多层次模型(MLM)对 LSA 进行分析却很有限。使用有限的一个原因可能是在 LSA 数据的多层次分析中纳入可信值和加权分析的复杂性。我们在 R 中提供了额外的函数,扩展了 WeMix(Bailey 等人,2023 年)软件包的功能,允许自动汇集可信值。此外,我们还提供了使用可信值进行模型比较的函数,以及将输出导出为不同格式(如 Word、html)的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visualization in Engineering
Visualization in Engineering Engineering-Engineering (miscellaneous)
CiteScore
8.60
自引率
0.00%
发文量
0
期刊介绍: Visualization in Engineering publishes original research results regarding visualization paradigms, models, technologies, and applications that contribute significantly to the advancement of engineering in all branches, including medical, biological, civil, architectural, mechanical, manufacturing, industrial, aerospace, and meteorological engineering and beyond. The journal solicits research papers with particular emphasis on essential research problems, innovative solutions, and rigorous validations.
期刊最新文献
The influence of religious attachment on intended political engagement among lower-secondary students Investigating item complexity as a source of cross-national DIF in TIMSS math and science Exploration of the linear and nonlinear relationships between learning strategies and mathematics achievement in South Korea using the nominal response model : PISA 2012 Combining machine translation and automated scoring in international large-scale assessments No substantive effects of school socioeconomic composition on student achievement in Australia: a response to Sciffer, Perry and McConney
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1