{"title":"Optimal Consumption and Investment with Independent Stochastic Labor Income","authors":"Alain Bensoussan, Seyoung Park","doi":"10.1287/moor.2023.0119","DOIUrl":null,"url":null,"abstract":"We develop a new dynamic continuous-time model of optimal consumption and investment to include independent stochastic labor income. We reduce the problem of solving the Bellman equation to a problem of solving an integral equation. We then explicitly characterize the optimal consumption and investment strategy as a function of income-to-wealth ratio. We provide some analytical comparative statics associated with the value function and optimal strategies. We also develop a quite general numerical algorithm for control iteration and solve the Bellman equation as a sequence of solutions to ordinary differential equations. This numerical algorithm can be readily applied to many other optimal consumption and investment problems especially with extra nondiversifiable Brownian risks, resulting in nonlinear Bellman equations. Finally, our numerical analysis illustrates how the presence of stochastic labor income affects the optimal consumption and investment strategy.Funding: A. Bensoussan was supported by the National Science Foundation under grant [DMS-2204795]. S. Park was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea, South Korea [NRF-2022S1A3A2A02089950].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"278 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a new dynamic continuous-time model of optimal consumption and investment to include independent stochastic labor income. We reduce the problem of solving the Bellman equation to a problem of solving an integral equation. We then explicitly characterize the optimal consumption and investment strategy as a function of income-to-wealth ratio. We provide some analytical comparative statics associated with the value function and optimal strategies. We also develop a quite general numerical algorithm for control iteration and solve the Bellman equation as a sequence of solutions to ordinary differential equations. This numerical algorithm can be readily applied to many other optimal consumption and investment problems especially with extra nondiversifiable Brownian risks, resulting in nonlinear Bellman equations. Finally, our numerical analysis illustrates how the presence of stochastic labor income affects the optimal consumption and investment strategy.Funding: A. Bensoussan was supported by the National Science Foundation under grant [DMS-2204795]. S. Park was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea, South Korea [NRF-2022S1A3A2A02089950].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.